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Investigation of multiple indoor air quality and energy use tradeoffs to 
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 In commercial buildings, ventilation, or air exchange between an indoor environment and the 

outdoors, is necessary for controlling contaminants emitted by indoor sources such as occupants, 

cleaning and personal care products, and building materials. In offices, increased ventilation has 

also been shown to significantly increase worker productivity and reduce sick leave. At the same 

time, increasing ventilation introduces more outdoor air pollutants, including ones with known 

public health consequences like particulate matter and ozone. Furthermore, ventilation accounts 

for about one-fourth of U.S. commercial heating, ventilation, and air-conditioning (HVAC) 

energy use and changes can have significant effects on building energy consumption. This 

research project aims to quantify, compare, and optimally or nearly optimally balance these 

multiple impacts for office buildings, while remaining alert to the fact that outcomes differ 

significantly by building, operating conditions, and user preference. 

 The project had three objectives. The first was to use Monte Carlo analysis over a wide range 

of climates and office building characteristics to evaluate combinations of mature existing 

technologies including demand-controlled ventilation (DCV), economizing, supply air 

temperature reset, and increased ventilation rate (VR). Some combinations were ‘win-win,’ 

reducing HVAC energy consumption by 12–27% while increasing work performance by 0.5% 

and eliminating 5 hours of absenteeism per year. Annually, such strategies could save U.S. $1.25 

billion in energy costs and generate $28–55 billion in total net benefits.  

 The second objective was to develop an outcome-based ventilation (OBV) decision-making 

framework, using a loss function to combine scientific knowledge, uncertainty, and parameters to 
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express user preferences. The OBV framework confirmed that human-related outcomes are much 

more valuable than energy use. For example, we evaluated an intervention that increased the VR 

by ~10 L/s/occ on a dataset representing the office sector. With “best estimate” user parameters, 

the average loss impact of every other outcome was greater than the one related to HVAC energy 

costs—by a factor of 47 for work performance, 25 for excess absence, 3.9 for particle exposure, 

and 1.1 for ozone exposure. Even the most ventilation-adverse user preferences still produced 

VRs that were very often as high as 30 L/s/occ and only rarely lower than 15 L/s/occ. 

 The third objective was to use optimization with the OBV framework to minimize loss over a 

daylong horizon and take advantage of weather, pollution, occupancy, and other transient 

dynamics. An optimal control problem was formulated, then translated to a nonlinear 

optimization problem, and solved by interior point methods. Results showed that, contrary to our 

hypothesis, numerically optimizing ventilation control for a single day did not provide substantial 

Pareto improvements over existing control methods. In fact, a strategy with economizer and DCV 

was very close to Pareto optimal on most days. Neither time-of-use pricing nor any factor in a 

sensitivity analysis revealed opportunities in which optimizing ventilation within each day of the 

year saved more than 5% of annual HVAC energy costs. 

 In concluding, we used the insights of this research to outline a procedure for next-generation 

ventilation that takes advantage of opportunities to optimize over an annual horizon and adjust for 

the influential climate and building parameters identified by sensitivity analysis. For daily 

control, it would employ existing successful technology components, like DCV and economizer 

controls, that we have shown to be capable of significant energy savings and, on a daily 

timescale, nearly optimal. These methods would be embedded in and guided by a more conscious 

annual strategy that includes an initial preference elicitation step and an offline annual 

optimization to intelligently allocate ventilation resources across the year. Such an approach 

could help make ventilation more effective and reliable, and allow users to make informed 

decisions about ventilation tradeoffs and understand their consequences.
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CHAPTER 1: INTRODUCTION 

1 INTRODUCTION 

 

1.1 Odors and the historical case for ventilation 

 Most residents of the United States and other developed countries spend the large majority of 

their lives indoors, where they experience the greatest fraction of their exposure to many airborne 

pollutants (Klepeis et al., 2001; Ott & Roberts, 1998; Wallace, 1995). For example, volatile 

organic compounds (VOC) often have higher concentrations indoors than outdoors (Bennett et 

al., 2011; Brown, Sim, Abramson, & Gray, 1994; Daisey, Hodgson, Fisk, Mendell, & Tenbrinke, 

1994; Ekberg, 1994). Ventilation, along with source control and air cleaning/filtration, is a critical 

part of controlling the concentration of pollutants emitted indoors and maintaining acceptable 

indoor air quality (IAQ). In U.S. commercial buildings, where Americans spend about 18% of 

their time (Klepeis et al., 2001), minimum levels ventilation levels are generally required by 

building code. 

 Historically, ventilation requirements developed to promote the hygiene of indoor spaces and 

combat “bad air,” which by the middle of the 19th century was recognized to mean limiting the 

accumulation of human bioeffluents (Persily, 2015). In 1858, Pettenkofer, correlating odor 

perception by subjects with carbon dioxide (CO2) levels, proposed a CO2 concentration limit of 

1000 ppm. This “Pettenkofer number” established the use of CO2 level as an indicator, or “a 

benchmark from which we can then also estimate a higher or lower content of other (pollutant) 

substances” (Zhang, Wargocki, Lian, & Thyregod, 2017). The indicator is useful because of the 

proportionality of human bioeffluent and human CO2 emissions. 

 In terms of the ventilation rate (VR), or the outdoor air flow per occupant, Pettenkofer’s CO2 

limit translates to 9–10 L/s/occ (Gids & Wouters, 2010). Additional calculations and experiments 

in the first few decades of the 20th century, also based on controlling organic odors exhaled by 

occupants, established minimum VRs ranging from 5 to 15 L/s/occ (Persily, 2015). Chamber 
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studies conducted by Yaglou and colleagues in the 1930s concluded that a VR of 7.5–9 L/s/occ 

produced an odor level that 80% of people entering from a clean air environment rated 

acceptable; the roughly 8 L/s/occ value, later backed up by multiple studies in the 1980s and 

1990s, has had an enduring influence on ventilation standards (Persily, 2015). 

 Today, such standards are often incorporated by reference into building codes for commercial 

buildings. The most widely adopted in the U.S. is ASHRAE Standard 62.1 (ASHRAE, 2013b), 

which sets minimum VR in its ventilation rate procedure (VRP). For office spaces, the minimum 

VR specified by Standard 62.1 and its precursor Standard 62 has varied over time, from 7.5 

L/s/occ in the first version in 1973, to 2.5 L/s/occ (for non-smoking spaces) in 1981, to 10 L/s/occ 

in 1989, to 8.5 L/s/occ (at default occupant density) from 2004 to the present (Persily, 2015). That 

historical range matches 3 to 10 L/s/occ required in offices by various contemporary ventilation 

standard around the world. The 10 L/s/occ adopted in the 1989 version of the standard was 

apparently based on beginning with the 7.5 L/s/occ derived from the Yaglou and similar studies, 

and adding 2.5 L/s/occ to control non-human contaminants. Persily found no specific justification 

for this increase, nor for the significant decrease from 1981–1989.  

 According to Persily, based on his own experience on the Standard 62.1 committee, setting 

minimum VRs “has always been challenging based on limited research results to support specific 

values, pressures by some to lower rates based on energy considerations, and pressures by others 

to raise them based on IAQ benefits” (Persily, 2015). ASHRAE and the Standard 62 committee 

struggled with the question of whether an engineering society should even consider health 

impacts when writing standards. After contentious debate and a member survey, the ASHRAE 

Board ultimately decided that while the Society would make no claims or guarantees about 

health, its standards would “consider health impacts where appropriate” (Persily, 2015). The 2013 

version of the standard states its goal as maintaining IAQ that “is acceptable to human occupants 

and that minimizes adverse health effects” (ASHRAE, 2013b).  The net effect of these competing 

pressures seems to have been to maintain the minimum VR values near the ~8 L/s/occ mark 
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established nearly a century ago as sufficient for diluting bioeffluents to achieve 80% occupant 

acceptability.  

 It should be noted that, for the purposes of this project, ventilation includes two components. 

Infiltration, or natural ventilation, occurs when outdoor air enters leakage pathways in the 

building envelope due to wind- and temperature-driven pressure differences. Mechanical 

ventilation refers to outdoor air introduced intentionally by a building heating, ventilation, and air 

conditioning (HVAC) system. In most commercial buildings, the mechanical portion dominates, 

though that is not always the case because infiltration varies significantly with building 

proportions, envelope quality, and weather conditions (ref). Nonetheless, the VR minimum 

requirements in ASHRAE 62.1 and similar standards are most frequently interpreted as design 

rates of mechanical ventilation, and any infiltration would be additional. When the VR minimum 

is used to determine a CO2 setpoint to which to control a space, however, the contribution from 

infiltration would be naturally included.  

 

1.2 Benefits of ventilation on comfort, acute health, task performance, and illness risk 

 Though aimed primarily and reducing occupant perception of odors associated with 

bioeffluents, ventilation also has significant impacts on a range of comfort, acute health, and 

performance outcomes, as demonstrated by numerous empirical findings in the lab and the field 

(Carrer et al., 2015; Clausen et al., 2011; Sundell et al., 2011). At the more innocuous end, it 

affects perceived freshness of the air, sensations of dryness in mouth or throat, and self-

assessments of mental performance or overall satisfaction. More serious acute health reactions 

like dry or irritated eyes, respiratory irritation or difficulty, drowsiness, fatigue, and headaches are 

regarded as symptoms of sick building syndrome (SBS).  

 A 1999 review of literature on human responses to ventilation and CO2 levels, including more 

than forty studies and 60,000 subjects, indicated that nearly every investigation had found that 
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one or more health or perceived air quality outcomes were statistically significantly worse at VR 

below 10 L/s/occ (Seppänen, Fisk, & Mendell, 1999). Many studies found additional reductions 

in SBS symptoms at VR up to about 20 L/s/occ. A statistical analysis of CO2 measurements and 

SBS symptom reports in 41 buildings found that odds of wheezing, chest tightness, or a sore 

throat, nose, or sinuses increases by 1.2–1.5 for each 100 ppm increase in indoor-outdoor CO2 

differential (Apte, Fisk, & Daisey, 2000). A quantitative meta-analysis of eight studies, including 

together a few thousand respondents, found that increased VRs in offices up to about 25 

L/s/person are associated with reduced SBS symptom incidence (Fisk, Mirer, & Mendell, 2009). 

According to the central estimate of the model fit in that investigation, an increase in VR from 10 

to 25 L/s/occ would, on average, reduce SBS symptom incidence by 29%. 

 Controlled experiments have found similar results. Evaluating 30 subjects at 3, 10, and 30 

L/s/occ, Wargocki et al. found that increasing ventilation monotonically and statistically 

significantly decreased the percentage of occupants dissatisfied with the air quality and odor 

intensity and increased perceived air freshness (Wargocki, Wyon, Sundell, Clausen, & Fanger, 

2000). It also consistently decreased average sensations of dryness in the mouth and nose, 

reduced reported difficulty thinking clearly, and made respondents feel better. Similarly, workers 

in a call center reported significant improvements in many SBS symptoms including air quality 

acceptability, aching eyes, dry skin, overall well-being, and fatigue (but not for eye irritation) in 

interventions involving changing VR and replacing particle filters (Wargocki, Wyon, & Fanger, 

2004). Although there remains uncertainty about specific causal pathways for many of these 

effects, many believe that exposure to VOCs from bioeffluents, building materials, personal care, 

or cleaning products play a substantial role in SBS symptom prevalence (Sundell et al., 2011; 

Zhang et al., 2017). It has been demonstrated that reduced VOC source strength and increased 

VRs have similar impacts on perceived air quality (Wargocki, Bako-Biro, Clausen, & Fanger, 

2002). 
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 A number of studies have established significant relations between ventilation levels and 

various measures of cognitive and task performance. In a study of one hundred fifth-grade school 

classrooms, each 1 L/s/occ increase in VR between 1 and 7 L/s/occ was associated with a nearly 

3% increase in students passing standardized tests in both math and reading (Haverinen-

Shaughnessy, Moschandreas, & Shaughnessy, 2011). Similarly, better performance on 

computerized testing of cognitive ability in English primary schools was observed at 8 L/s/occ 

compared to a very low rate of 1 L/s/occ (Bakó-Biró, Clements-Croome, Kochhar, Awbi, & 

Williams, 2011).  

 The relation of ventilation to performance has been studied even more frequently in offices, 

where it has also been observed well beyond the ~8 L/s/occ level. Wargocki et al. also tested four 

simulated office tasks like typing, proofreading, and addition at VR of 3, 10, and 30 L/s/occ 

(Wargocki et al., 2000). Only typing was significantly affected by ventilation at a 5% significance 

level, but performance on all tasks improved monotonically with increasing ventilation, and all 

associations were significant at a 10% significance level. For each doubling of the VR, typing 

performance increased by 1.7% on average. In the call center experiment, talk time was a key 

metric, with shorter calls indicating efficiency and better performance (Wargocki et al., 2004). 

When outdoor airflow was increased considerably, talk time decreased by 6% if the building had 

a new particle filter (but increased if a dirty filter was in place). 

 Compiling nine studies, covering nearly a thousand subjects, Seppänen and colleagues 

developed a quantitative relationship between the VR and work performance (Seppänen, Fisk, & 

Lei, 2006). The included studies used performance measures like talk time, typing speed, addition 

speed, and reaction time. The authors’ model indicated a 1–3% improvement in performance per 

10 L/s/occ VR increase, on average. The association was greatest when the VR was low, 

particularly below about 20 L/s/occ, but continued up to over 45 L/s/occ. It was significant up to 

15 L/s/occ with a 95% confidence interval (CI) and 17 L/s/occ with a 90% CI. 
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 Some recent research has indicated that CO2 levels, in addition to indicating the VR, can 

themselves affect performance on multiple cognitive assessments. One chamber study on 22 

participants found that, with the VR held constant, there were large and significant declines on 

seven of nine decision-making performance tests at a CO2 concentration of 2500 ppm compared 

to 1000 ppm (Satish et al., 2012). There were also moderate, though still statistically significant, 

improvements at 600 ppm compared to 1000 ppm. A second chamber study with 24 participants 

found that VOC concentration and CO2 concentration were independently associated with nine 

tests of cognitive performance (J. G. Allen et al., 2015). Cognitive scores were lower when VOC 

sources were present, when the VR was 20 L/s/occ versus 40 L/s/occ, and when purified CO2 was 

artificially injected and other variables were held constant. However, other recent, high-quality 

chamber experiments have found no direct relation of task performance to CO2 concentration 

(Zhang et al., 2017). One possible reason for the discrepancy is that the Satish and Allen studies 

measured performance with a battery of tests that required greater mental concentration and 

acuity, while the tasks in the Zhang study were more repetitive and manual. In any case, all 

studies found that ventilation—which reduces bioeffluents and other VOCs as well as CO2, after 

all—has a positive effect on cognitive and task performance. 

 Finally, a number of studies have shown that increasing ventilation can reduce the rate of sick 

leave. For example, examination of illness absence and VRs over two years in 162 elementary 

school classrooms in 28 California schools showed a statistically significant impact (Mendell et 

al., 2013). Over the range of 1–20 L/s/occ, each added 1 L/s/occ reduced illness absence by 1.6%. 

The most comprehensive investigation in offices was conducted at Polaroid in 1994 (Milton, 

Glencross, & Walters, 2000), based on sick leave rates over a year for nearly 4000 workers in 40 

buildings with more than a hundred ventilated spaces. The authors divided spaces into two bins 

based on VR, with moderate ventilation estimated at ~12 L/s/occ and high ventilation at 24 

L/s/occ. For the 705 office workers in the study, the relative risk (RR) of absence at the lower 

ventilation level, compared to the higher one, was 1.52 (95% CI: 1.18–1.97). In the same terms as 
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the Mendell study of classrooms, this would be a 3.5% decrease in sick leave absence per 1 

L/s/occ of added ventilation. 

 As Milton et al. noted, there are two potential causal mechanisms for the relation between 

sick leave absence and ventilation: reactions to irritants and allergens, or impacts on respiratory 

illness due to either airborne transmission of infections or altered human susceptibility. The 

irritation explanation would be similar to the presumed mechanism for comfort, SBS, and 

performance impacts. After considering variations of both explanations, Milton et al. essentially 

ruled irritation explanation, because controlling for air quality complaints did not reduce the 

association between ventilation and sick leave. In addition, the airborne transmission pathway is 

consistent with the three studies on ventilation and respiratory illness collected in a review 

(Seppänen, Fisk, and Mendell 1999), which all had relative risk of 1.5–2 for respiratory illness at 

a low ventilation condition versus a high ventilation condition. Other corroboratory evidence 

comes from a field study in offices that modulated outdoor air supply for periods of a week and 

measured rhinovirus RNA and CO2 levels as a proxy for ventilation (Myatt et al., 2004). Data 

analysis indicated that the probability of detecting airborne rhinovirus was elevated whenever the 

indoor CO2 was more than 100 ppm greater than outdoors. A panel including experts in building 

science, microbiology, epidemiology, and ventilation reviewed 40 studies about airborne 

transmission of infectious diseases (Li et al., 2007). They concluded that ten studies were 

conclusive, and that there “is strong and sufficient evidence to demonstrate the association 

between ventilation, air movements in buildings and the transmission/spread of infectious 

diseases such as measles, tuberculosis, chickenpox, influenza, smallpox and SARS.” 

 

1.3 Ventilation impacts on chronic exposures 

 Ventilation could also have long-term health impacts, including on outcomes such as cancer, 

pulmonary disease, myocardial infarction, or endocrine disruption. However, unlike the short-
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term associations with perceived air quality, environmental comfort, acute SBS symptoms, work 

performance, and sick leave absence, long-term ventilation impacts are speculative, and may well 

remain uncertain for the foreseeable future (Sundell et al., 2011). As a general rule, chronic 

impacts cannot be linked to occupant perceptions or sensitivities (Seppänen & Fisk, 2004). The 

typical method for assessing chronic impacts is to use the average indoor concentration as a proxy 

for occupant exposure—a reasonable assumption, for most VOCs (Sexton et al., 2004)—and 

compare it to any established chronic exposure thresholds (Logue, McKone, Sherman, & Singer, 

2011; Parthasarathy, McKone, & Apte, 2011) or use it in concentration-response functions (Chan, 

Parthasarathy, Fisk, & McKone, 2016; Logue, Price, Sherman, & Singer, 2012). However, for 

most contaminants, exposure thresholds are only available for industrial occupational settings, 

and often exceed typical concentrations in non-industrial settings, sometimes by orders of 

magnitude (Persily, 2015). The threshold approach is also not appropriate for long-term, low 

concentration exposures, in which mixtures of chemicals may have non-additive effects (Sundell 

et al., 2011). Furthermore, while ventilation is effective at diluting bioeffluents, ventilation’s 

removal efficacy varies widely for pollutants with indoor sources, like VOCs from personal care 

products, cleaning supplies, and building material emissions (Chan et al., 2016; Rackes & 

Waring, 2016). 

Two exposures affected by ventilation that almost certainly do have long-term chronic effects 

are to outdoor fine particulate matter (PM2.5 = particles with aerodynamic diameter < 2.5 µm) and 

ozone (O3), both of which ventilation introduces from the outdoors. Both also have well-

established, no-threshold associations with multiple adverse short- and long-term health 

endpoints, although the precise causal mechanisms by which PM exposure affects human health 

remain uncertain (Phalen & Wolff, 2000). In the public health and epidemiology literature, 

increases in outdoor PM2.5 have been correlated with increased cardiovascular and respiratory 

diseases (Hoek et al., 1998; Peters et al., 2000; Dominici et al., 2006; Pope et al., 2009), chronic 
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bronchitis (Abbey et al., 1995), and increased mortality (Dockery et al., 1992; Dockery & Pope, 

1993; Pope et al., 1995; Pope et al., 2002; Schwartz et al., 1996).   

Increasing ventilation introduces more outdoor air pollutants to the indoor environment 

(Bekö, Clausen, & Weschler, 2008; Ben-David & Waring, 2016; Quang, He, Morawska, & 

Knibbs, 2013; Rackes & Waring, 2013; Stephens, Gall, & Siegel, 2012; Weschler, 2000). Indeed, 

most exposure to outdoor PM2.5 occurs indoors (Klepeis et al., 2001; Jenkins et al., 1992; Lioy et 

al., 1988; Wallace, 1993), though the bulk of that is in residences. Some studies have associated 

urban-level exposure impacts to predicted changes in exposure inside buildings (Hänninen, 2005; 

Bekö et al., 2008), but others maintain that there is a lack of understanding regarding the health 

effects of outdoor PM once indoors (Clausen et al., 2011). There is suggestive evidence both that 

impacts are valid for indoor exposures and of endpoint mechanisms. For example, employing 

high-efficiency particulate air (HEPA) filters in residential buildings reduces markers used to 

predict future adverse coronary events (Allen et al., 2011; Brauner et al., 2008). In any case, it has 

become common in the indoor air literature to apply outdoor air correlations for PM2.5 and ozone 

exposure to the fraction of exposure that occurs indoors (Chan et al., 2016; Logue et al., 2012), 

and that approach is followed here. 

 

1.4 Ventilation energy impacts 

 In addition to these many IAQ implications, current ventilation practice accounts for ~1/4 of 

HVAC energy consumed by commercial buildings (Fisk, Black, & Brunner, 2012; U.S. Energy 

Information Administration (EIA), 2006b). This is quite substantial when one considers that 

buildings consume about two-fifths of primary energy in the U.S., which is essentially evenly 

split between residential and commercial uses (U.S. DOE, Energy Efficiency and Renewable 

Energy, 2012a). Heating, ventilation, and air-conditioning (HVAC) accounts for 30–40% (U.S. 

DOE, Energy Efficiency and Renewable Energy, 2012b; U.S. Energy Information Administration 
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(EIA), 2006c) of U.S. commercial buildings’ energy consumption, or 5–6% of all U.S. primary 

energy. Even the substantial one-fourth fraction likely underestimates ventilation’s potential to 

impact heating, cooling, and fan energy consumption. Ventilation and infiltration are routinely 

identified as the most important variables in sensitivity analyses of total building energy use 

(Eisenhower, O’Neill, Narayanan, Fonoberov, & Mezić, 2012; Hopfe & Hensen, 2011; 

Rodríguez, Andrés, Muñoz, López, & Zhang, 2013; Sanchez, Lacarrière, Musy, & Bourges, 

2014), and a next-generation optimized ventilation strategy could potentially reduce HVAC 

energy use by as much as half in some situations (Rackes & Waring, 2014). Increasing VRs 

generally increases energy use, though in some settings can also save energy when free cooling is 

available. Some practitioners’ desires to save energy provides significant pressure on technical 

committees setting minimum ventilation rates to select lower values, or avoid increases (Persily, 

2015). 

 

1.5 Considering multiple criteria and ventilation tradeoffs 

 There are, therefore, numerous and competing impacts of ventilation. This research proposes 

sorting the impacts into three categories. Short-term impacts on occupant comfort, environmental 

satisfaction, SBS symptoms, performance, and illness absence are grouped as “profitable IAQ 

impacts.” Here “profitable” means that these short-term impacts can benefit occupants directly, 

and that in a market-based economic system these benefits can be monetized to demonstrate 

profit to an actor like a business owner or a building owner. Long-term impacts are classified as 

“IAQ public health impacts” or “IAQ health impacts,” considered as risk adjustments in a public 

health framework. Energy consumption costs, including associated social costs if desired, make 

up the third category. 

 Previous studies have investigated elements of two of the three impact categories. Fisk et al. 

showed that the economic benefits of increasing the minimum VR in U.S. offices from 8 to 15 
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L/s/occ, due to improved work performance and reduced absence, were about 200 times the 

added energy costs (Fisk et al., 2012). Similarly, under four hypothetical office sector scenarios, 

the economic benefits of ventilation’s profitable IAQ outcomes were estimated to exceed the 

costs of increased energy consumption by two orders of magnitude (Fisk, Black, & Brunner, 

2011). Dutton et al. found that natural ventilation could expose office workers to outdoor 

pollutants whose public health impacts overwhelmed the benefits of reduced SBS symptoms, in 

economic terms (Dutton, Banks, Brunswick, & Fisk, 2013). Dutton and Fisk compared multiple 

interventions across the California office stock in terms of both formaldehyde exposure and 

HVAC energy consumption (Dutton & Fisk, 2014).  

 No study appears to have considered profitable IAQ impacts, IAQ public health impacts, and 

energy consumption all together. Doing so is one goal of this research. More broadly, the 

existence of multiple outcomes introduces the overarching need for better analysis and 

consideration of tradeoffs. 

 

1.6 Dynamic strategies and Pareto improvements 

 When there are multiple criteria to consider when making a decision, at some point there will 

be tradeoffs. However, it is also often possible to achieve Pareto improvements, or better 

outcomes for one objective without sacrificing results for others. A central part of this research is 

investigating the hypothesis that Pareto improvements are possible for ventilation strategies. The 

first part of that investigation takes the form of examining existing approaches for dynamically 

modulating ventilation. These alternative ventilation strategies have been designed to save 

energy, but can also be combined or adjusted to, for example, save energy without harming 

profitable IAQ, or improve profitable IAQ outcomes without using more energy. 

 One mature dynamic ventilation technology is demand-controlled ventilation (DCV), which 

modifies the OA flow based on current occupancy or a proxy for it. Studies have estimated DCV 
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to save from about 10% of HVAC energy for offices in a variety of climates (Hart, Callahan, 

Anderson, & Johanning, 2011), to 20% for restaurants and retail even in mild climates (Lawrence 

& Braun, 2007). Most of the savings come from heating, with 5–40% heating use reductions in 

offices (Brandemuehl & Braun, 1999; Fisk & De Almeida, 1998), and minimal cooling savings 

opportunity in most offices (Fisk & De Almeida, 1998). In general, savings may depend more on 

rightsizing ventilation for actual occupancy that is lower than design, rather than on dynamic 

control (Brandemuehl & Braun, 1999; Hart et al., 2011). To our knowledge, DCV has only been 

considered as an energy-saving technology; in this context, it is likely to degrade IAQ related to 

indoor-emitted contaminants (Rackes & Waring, 2013). However, by modifying DCV 

characteristics, like target VR or CO2 setpoint, we hypothesize that it can be deployed to achieve 

Pareto improvements. 

 A second mature technology is airside economizing, which is a control sequence that 

introduces more OA when it can provide free cooling. Multiple simulated assessments in offices 

have found that 5–15% HVAC electricity savings are possible from economizing (Brandemuehl 

& Braun, 1999; Fisk, Seppanen, Faulkner, & Huang, 2005; Yao & Wang, 2010). Installing 

economizers in the approximately half of U.S. offices that do not have them could save an 

estimated $320 million in aggregate energy costs annually (Fisk et al., 2012). Furthermore, 

economizing naturally provides Pareto improvements, at least in terms of profitable IAQ impacts 

and energy savings. In the study that considered adding economizers to the half of U.S. where 

they are absent, for example, the annual economic benefits were $220 million from decreased 

SBS symptoms, $8.6 billion from reduced sick leave, and $24.2 billion from increased work 

performance (Fisk et al., 2012). Another simulation study showed that implementing economizers 

in California office buildings would on average lower indoor formaldehyde exposure by 38% 

while savings 20% of HVAC energy (Dutton & Fisk, 2014).  

 Despite the maturity of DCV, economizing, and other mature ventilation-affecting 

technologies like supply air temperature reset, these technologies appear to have low-to-medium 
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market penetration (Hamilton, Rackes, Gurian, & Waring, 2016). Furthermore, there has been 

little research on how best to combine these technologies or set parameters or targets like 

minimum VRs or CO2 setpoints. One goal of this research is to analyze which among, and in 

what situations, these technologies should be adopted, and to provide guidance to both decision-

makers and policymakers. We also conduct optimizations to determine if meaningful Pareto 

improvements over existing strategies like DCV and economizing are possible. 

 

1.7 The importance of setting: parameter sensitivity 

 All of these potential impacts can look very different depending on the building, and 

achieving the same desired tradeoff point (however defined) in two buildings, or in the same 

building on two days, can require different strategies. Therefore, another broad goal of this 

research was to expand the parameter space of investigation and incorporate significant 

sensitivity analysis of ventilation impacts. The only previous study to have thoroughly examined 

more than a single ventilation technology on more than a case study or prototype basis is now 

nearly two decades old. It tested combinations of DCV and economizer use in single zone, for 

constant-air-volume mechanical systems in 20 locations (Brandemuehl & Braun, 1999), and 

concluded that the largest benefits of the two technologies are mostly mutually exclusive, 

especially in offices.  

 By and large, variations among building, mechanical system, and climate parameters, despite 

their strong influences on ventilation strategy energy and indoor air quality impacts, have not 

previously been studied or quantified. This research repeatedly adopts a Monte Carlo approach to 

construct datasets that climatologically represented of U.S. offices, with broadly but realistically 

varied building parameters, allowing the sensitivity of energy impacts to building and climate 

predictors to be evaluated. These methods were broadly in line with model-based sensitivity 

analysis of building performance (Tian, 2013), which has recently been applied to evaluate 
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uncertainties in design inputs (Hopfe & Hensen, 2011; Rodríguez et al., 2013; Sanchez et al., 

2014), prune non-influential model parameters (Eisenhower et al., 2012), assess design impacts 

(Rackes, Melo, & Lamberts, 2016) and operational strategies (Rackes & Waring, 2013), and 

identify favorable equipment implementation scenarios (Burhenne, Tsvetkova, Jacob, Henze, & 

Wagner, 2013). The goals of this research were some of the central ones of sensitivity analysis: 

relating output to input variables, identifying important regions of the input space, and, 

ultimately, using models and analysis to improve recommendations to decision-makers (Saltelli et 

al., 2008).  

 

1.8 Research objectives: informing next-generation ventilation 

 This research investigates advanced commercial building ventilation strategies and develops 

next-generation control approaches. The focus is on office buildings, which are the largest 

category of commercial buildings in the U.S. in terms of floorspace (U.S. EIA, 2015a), and also 

the most-studied commercial building type, providing reasonably reliable building parameter 

distributions and ventilation impact estimates. Through successive iterations of this research, we 

developed three ways in which next-generation ventilation approaches can improve on 

deficiencies in current approaches, and that we believe should guide development: ventilation 

strategies should be outcome-based, setting-sensitive, and dynamic. 

 Outcome-based ventilation strategies are guided by their expected impact on outcomes. They 

are based on models of performance, rather than prescriptive requirements. Determining what 

outcomes to include and their relation to ventilation required significant literature research and 

synthesis, to select and adapt appropriate models and establish reasonable ranges of input 

parameters. Defining outcome-based ventilation also ultimately required developing an approach 

for combing multiple outcomes into a single objective by which a ventilation decision can be 

evaluated and made. 
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 Setting-sensitive ventilation strategies adjust depending on important climate, building, and 

mechanical system characteristics. For example, a building with high infiltration might require 

less mechanical ventilation, or a mild day might call for more outdoor air than a very cold day 

would. Identifying important parameters required varying many parameters in Monte Carlo 

samples, to study ventilation impacts in a wide variety of settings and conduct sensitivity 

analyses. 

 Dynamic ventilation strategies adjust flows over time to take advantage of the transient 

patterns of exogenous variables like outdoor temperature, outdoor pollution, occupancy, and 

electricity prices. Whether the time scope is annual and the resolution daily, or the scope is a day 

and the resolution is a few minutes, dynamic modulation can provide Pareto improvements, that 

is, increase performance for some outcomes without decreasing it for any others.  

 To develop next-generation ventilation with these characteristics, research is needed to 

explore multiple outcomes affected by ventilation, systematically assess the influence of building 

and climate characteristics on outcomes, and explores dynamic ventilation strategies that may 

provide Pareto improvements. We divided these needs into three research objectives: 

• Objective 1: Evaluate existing alternative ventilation strategies over a wide range of 

climates and office building characteristics, in terms of multiple outcomes including 

economically profitable IAQ impacts, IAQ public health impacts, and energy use costs. 

Include combinations and variations of existing dynamic strategies in offices, and using 

Monte Carlo sampling to investigate the influence of numerous parameters. Chapter 2 

addresses this objective for energy use, and Chapter 3 addresses it for both energy and 

IAQ outcomes. 

• Objective 2: Develop a general outcome-based ventilation (OBV) decision-making 

framework for evaluating ventilation decisions. Using the idea of a loss function, 

combine multiple outcomes, and integrate scientific knowledge, uncertainty, and user 

preferences. This framework must be sensitive to setting- and user-specific tradeoffs 
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among IAQ and energy impacts, including social costs of energy consumption. Chapter 4 

addresses this objective. 

• Objective 3: Use the OBV framework to optimize ventilation over a daylong horizon to 

determine if there are significant opportunities for novel control schemes to improve 

multiple outcome objectives. Convert the loss function into an optimal control problem, 

then translate that to a nonlinear optimization problem and solve by interior point 

methods. Use the results to assess whether there are significant opportunities for Pareto 

improvement by altering control over a daylong timescale. Chapter 5 addresses this 

objective. 

  

 Chapter 6 briefly pulls together the insights from the completion of the three research 

objectives described in Chapters 2–5. It provides an outline of a path forward to next-generation 

ventilation that is outcome-based, setting-specific, and dynamic in ways that this research 

indicates would be most useful. The proposed procedure would make use of existing successful 

technology components, like DCV and economizer controls, for real-time control. Rather than 

allow those feedback mechanisms to implicitly make important decisions about ventilation 

impacts, though, it would employ an explicit preference elicitation step and an offline annual 

optimization to intelligently allocate ventilation resources across the year. Essentially, the 

procedure would impose an outcome-based, climate- and user-specific supervisory control while 

allowing effective local control methods to achieve control targets. Such an approach could help 

make ventilation more effective and reliable, and allow users to make informed decisions about 

ventilation tradeoffs and understand their consequences. 
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CHAPTER 2: COMPREHENSIVE ASSESSEMENT AND SENSITIVITY 
ANALYSIS OF ENERGY SAVINGS OF MATURE ALTERNATIVE 

VENTILATION STRATEGIES 
2 COMPREHENSIVE ASSESSEMENT AND SENSITIVITY ANALYSIS OF ENERGY SAVINGS OF MATURE ALTERNATIVE VENTILATION 

STRATEGIES 

 

 

Chapter abstract: Mature technologies exist to reduce the heating, ventilation, and air-

conditioning (HVAC) energy associated with ventilation and use ventilation proactively to save 

energy. This study investigated the energy use impacts in U.S. office buildings of multiple 

alternative ventilation strategies that combined: economizing, demand controlled ventilation 

(DCV), supply air temperature reset (SR), and/or a doubled ventilation rate. We used energy 

simulations in a Monte Carlo analysis, sampling 17 building inputs and varying locations to 

match the climate zone distribution of the U.S. office stock. Results indicated the possibility for 

significant savings compared to a baseline that ventilated constantly at a minimum rate in both a 

small office type with a constant air volume (CAV) HVAC system and a medium office type with a 

variable air volume (VAV) system. In 95% of instances, HVAC source energy savings were 5–

25% in the small-CAV office (median: 11%) and 6–42% in the medium-VAV office (median: 

27%). In the small-CAV office, DCV typically saved the most energy, usually from heating, and 

heating degree days and occupant density were decisive influences. In the medium-VAV office, 

economizing and SR were most important, DCV usually only had minor impacts, and zone 

temperature setpoints, along with climate indicators, were the critical influences. Other than 

infiltration, envelope characteristics did not strongly influence energy impacts. The untapped 

primary energy savings of alternative ventilation strategies over the 74% of U.S. office floorspace 

reasonably represented by our modeling was estimated at 36 TWh per year, with an annual value 

of U.S. $1.25 billion.  
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2.1 Chapter introduction 

 Buildings consume about two-fifths of primary energy in the U.S., which is essentially evenly 

split between residential and commercial uses (U.S. DOE, Energy Efficiency and Renewable 

Energy, 2012a). Heating, ventilation, and air-conditioning (HVAC) accounts for 30–40% (U.S. 

DOE, Energy Efficiency and Renewable Energy, 2012b; U.S. Energy Information Administration 

(EIA), 2006c) of U.S. commercial buildings’ energy consumption, or 5–6% of all U.S. primary 

energy. Ventilation is the provision of outdoor air (OA) to an interior space to control 

contaminant levels, odors, humidity, or temperature (ASHRAE, 2013b; Sundell et al., 2011), and 

it alone accounts for about one-fourth of U.S. commercial HVAC energy use (Fisk et al., 2012; 

U.S. Energy Information Administration (EIA), 2006c). Even that substantial fraction likely 

underestimates ventilation’s potential to impact heating, cooling, and fan energy consumption. 

Ventilation and infiltration are routinely identified as the most important variables in sensitivity 

analyses of total building energy use (Eisenhower et al., 2012; Hopfe & Hensen, 2011; Rodríguez 

et al., 2013; Sanchez et al., 2014), and a next-generation optimized ventilation strategy could 

potentially reduce HVAC energy use by as much as half in some situations (Rackes & Waring, 

2014). 

 Currently, in most mechanically conditioned commercial buildings, the ventilation strategy is 

simply to supply a constant minimum ventilation rate prescribed by a standard (ASHRAE, 

2013b). However, a number of mature technologies that can save HVAC energy relative to a 

fixed minimum-rate baseline already exist. One of these is demand controlled ventilation (DCV), 

which dynamically modifies the OA flow based on current occupancy or a proxy for it. Studies 

have estimated DCV to save from about 10% of HVAC energy for offices in a variety of climates 

(Hart et al., 2011), to 20% for restaurants and retail even in mild climates (Lawrence & Braun, 

2007). Most of the savings come from heating, with 5–40% heating use reductions in offices 

(Brandemuehl & Braun, 1999; Fisk & De Almeida, 1998), depending on location, occupant 

density, and control logic. One review concluded cooling savings were minimal in offices (Fisk & 
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De Almeida, 1998), but savings are available in other building types (Brandemuehl & Braun, 

1999; Chao & Hu, 2004; Nassif, 2012). In general, savings may depend more on rightsizing 

ventilation for actual occupancy that is lower than design, rather than on dynamic control 

(Brandemuehl & Braun, 1999; Hart et al., 2011).  

 A second mature technology is airside economizing, which is a control sequence that 

introduces more OA when it can provide free cooling. Multiple simulated assessments in offices 

have found that 5–15% HVAC electricity savings are possible from economizing (Brandemuehl 

& Braun, 1999; Fisk et al., 2005; Yao & Wang, 2010). Installing economizers in the 

approximately half of U.S. offices that do not have them could save an estimated $320 million in 

aggregate energy costs annually (Fisk et al., 2012). A third technology is supply air temperature 

reset (SR), or increasing the supply air temperature setpoint at part-load conditions to save 

compressor and reheat energy (California Energy Commission, 2003). Though it does not 

manipulate OA flow explicitly, it interacts significantly with the economizer cycle; when both are 

installed, SR alters OA control and enhances energy savings (Gang Wang & Song, 2012). A final 

possible way to modify a ventilation strategy is simply changing the minimum or target 

ventilation rate, which can have potentially large energy impacts (Fisk et al., 2012), whose 

magnitude and even direction of change can vary greatly among buildings and locations 

(Hamilton et al., 2016). 

 Despite their maturity, these technologies appear to have low-to-medium market penetration 

(Hamilton et al., 2016). The goal of this study, therefore, was to analyze which among, and in 

what situations, these technologies should be adopted, and to provide guidance to both decision-

makers and policymakers. With U.S. offices as the focus, this investigation is comprehensive in 

terms of considering, in most cases for the first time, (i) multiple component technologies and 

their combined effects, (ii) a wide array of building and climate parameters for more detailed 

impact understanding and prediction, and (iii) multiple building and system types, including 

variable air volume (VAV) systems. Furthermore, while this chapter focuses on energy impacts, 
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Chapter 3 expands to a fourth dimension of comprehensiveness: consideration of energy along 

with a number of important indoor air quality impacts, including worker productivity (Seppänen 

et al., 2006), volatile organic compound concentrations (Rackes & Waring, 2016), and pollutants 

introduced from outdoors (Ben-David & Waring, 2016; Johnson, Waring, & DeCarlo, 2017). 

 To do so, we defined eight ‘alternative ventilation strategies’ that were combinations of 

economizing, DCV, SR, and doubled ventilation. We used Monte Carlo analysis and building 

performance simulation to evaluate energy impacts relative to a fixed minimum-rate baseline, for 

both a small office type with a constant air volume (CAV) HVAC system and in a medium office 

type with a VAV system. The only previous study to have thoroughly examined more than a 

single ventilation technology tested combinations of DCV and economizer use in single zone, for 

CAV mechanical systems in 20 locations (Brandemuehl & Braun, 1999), and concluded that the 

largest benefits of the two technologies are mostly mutually exclusive, especially in offices. Here, 

we re-examined that conclusion in light of interactions with additional technologies like SR, and 

in buildings with VAV systems. 

 Even more importantly, this work assessed variations among building, mechanical system, 

and climate parameters, whose strong influences on ventilation strategy energy impacts have not 

previously been studied or quantified. A Monte Carlo approach was used to construct datasets 

that climatologically represented of U.S. offices, with broadly but realistically varied building 

parameters, allowing the sensitivity of energy impacts to building and climate predictors to be 

evaluated. These methods were broadly in line with model-based sensitivity analysis of building 

performance (Tian, 2013), which has recently been applied to evaluate uncertainties in design 

inputs (Hopfe & Hensen, 2011; Rodríguez et al., 2013; Sanchez et al., 2014), prune non-

influential model parameters (Eisenhower et al., 2012), assess design impacts (Rackes et al., 

2016) and operational strategies (Rackes & Waring, 2013), and identify favorable equipment 

implementation scenarios (Burhenne et al., 2013). Though our application was somewhat 

different—i.e., understanding real variability among instances, not uncertainty in a single 
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model—our goals were those of sensitivity analysis: relating output to input variables, identifying 

important regions of the input space, and, ultimately, using models and analysis to improve 

recommendations to decision-makers (Saltelli et al., 2008).  

 

2.2 Methods 

2.2.1 Building typologies and modeling 

 This study focused on offices, which are the largest users of U.S. commercial building 

floorspace (U.S. Energy Information Administration (EIA), 2015c), and for which building 

parameters are relatively well characterized and mechanical systems typically capable of using 

the strategies investigated. We conducted assessments in two office building types. The ‘small-

CAV’ office was single story and small (325 m2), with a single zone served by a packaged CAV 

HVAC system with a single-speed direct expansion (DX) cooling coil and a gas-fired heating 

coil. The ‘medium-VAV’ office was medium-sized (4,982 m2) with three stories, each with one 

core and four perimeter zones. Each floor had a VAV system that distributed air to modulable 

terminal units with hot water reheat coils in each zone. A central boiler supplied the building’s 15 

reheat coils, as well as three central heating coils. Each VAV air handler cooled air with a two-

speed DX cooling coil.  

 The goal in evaluating energy impacts in these two particular office buildings was to explore 

the range of size- and system-related effects likely to be observed in typical offices. The ratio of 

exterior surface area to building volume was much greater in the small building, driving 

infiltration and envelope thermal transfer. Internal gains, on the other hand, were expected to be 

more dominant in the medium building. At the same time, the two buildings’ HVAC systems 

differed in two key ways. First, the medium-VAV office’s HVAC system served multiple thermal 

zones with distinct loads, while the system in the small-CAV office only had a single zone. 

Second, the medium-VAV air handler could vary the supply airflow rate but not the supply air 
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temperature, unless using a strategy that employed SR. The small-CAV system, by contrast, 

provided constant supply flow at variable temperature.  

 The office building models were implemented in the whole-building energy simulation 

program EnergyPlus (U.S. DOE, 2015). We selected EnergyPlus because it is physics-based, is 

validated (e.g., to ASHRAE Standard 140-2011 (ASHRAE, 2011)), allows modification of a 

wide array of parameters, has an active research and development community, and is in general 

the most mature research-grade whole-building energy simulation engine available. The office 

types were derived from existing EnergyPlus reference models (Deru et al., 2011) but underwent 

slight modifications, including adjustment of mechanical systems, elimination of the attic in favor 

of a flat roof in the small-CAV office, and slight alteration of schedules for consistency. 

 The most significant change we made in the reference models was implementing our own 

infiltration calculation routine, since infiltration can have a strong influence on ventilation control 

and its impacts. The original reference buildings’ infiltration was constant during the day and 

unaffected by outdoor conditions. It also assumed infiltration would be drastically and uniformly 

reduced during HVAC system operation, to an extent unlikely to be achievable in small buildings. 

Instead, our routine was based on first sampling the building envelope’s air-leakage coefficient C 

from a statistical model of commercial buildings (Chan, 2006), and then using a whole-building 

form of the LBL infiltration model (ASHRAE, 2013a) at runtime to determine infiltration 

airflows given time-varying temperatures and wind speeds. Infiltration reductions during system 

operation were based on the building pressurization achieved by returning less air (by a quantity 

that was either 10% of the supply flow, or the OA intake flow, whichever was smaller) from the 

building zones than the system supplied (Ng, Musser, Persily, & Emmerich, 2012). 
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2.2.2 Ventilation strategies 

 We assessed a single Baseline and multiple alternative ventilation strategies in each office 

building (Table 1). The Baseline ventilation strategy used a fixed mechanical ventilation rate 

(VR) of 9.4 L/s per occupant (20 ft3/min/occ), the minimum rate specified by ASHRAE Standard 

62-2001 (ASHRAE, 2001). The alternative strategies used combinations of economizer controls, 

DCV, SR, and a doubled constant mechanical VR (= 18.9 L/s/occ). Economizing could either be 

lockout, meaning it operated only when OA could meet the cooling load completely without any 

mechanical cooling, or integrated economizing that was based on the differential enthalpy (DE) 

difference between return and outdoor air. When DCV was used, it adjusted OA to not exceed a 

CO2 setpoint in the critical (highest CO2 concentration) zone. The setpoint was based on the 

steady state CO2 concentration achieved with a VR of 9.4 L/s/occ (i.e., 950 ppm) for all strategies 

with D950 in their name, or of 18.9 L/s/occ (i.e., 675 ppm) for strategies with D675 in their name. 

In the medium-VAV office, all strategies with SR in their name allowed the supply air 

temperature to rise to the highest temperature capable of meeting the cooling load in all zones 

when VAV flows were at minimum, up to a maximum of 18 °C (64.4 °F). In all other strategies, 

including the Baseline, the supply air temperature was fixed at 12.8 °C (55 °F). (SR is not an 

applicable technology in the small-CAV office, where the HVAC system modulates the supply 

air temperature to meet the load by definition.) 
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Table 1 Evaluated Baseline and alternative ventilation strategies. 

 
 

2.2.3 Varied building parameters 

 To assess these strategies’ impacts over a wide range of situations, we conducted building 

energy simulations within a comprehensive Monte Carlo analysis, both by varying climates 

(described in the following section) and sampling 17 building parameters to determine each 

unique modeled instance. Table 2 lists the parameters, related details, and their sampling 

distributions. Every effort was made to match probability distributions to realistic values for U.S. 

offices, while at the same time to sample a broad enough parameter space to capture all effects of 

interest.  

 

Strategy Office type Minimum VR 
(L/s/occ [cfm/occ]) Economizing DCV CO2 

setpoint (ppm)

Supply air 
temperature 

reset
Baseline Both 9.4 (20) No - No
EconLock Both 9.4 (20) Yes - Lockout - No
Econ Both 9.4 (20) Yes - DE - No
Econ+SR Med-VAV 9.4 (20) Yes - DE - Yes
D950 Both - No 950 No
Econ+D950 Both - Yes - DE 950 No
Econ+SR+D950 Med-VAV - Yes - DE 950 Yes
2×VR Both 18.9 (40) No - No
Econ+D675 Sm-CAV Yes - DE 675 No
Econ+SR+D675 Med-VAV - Yes - DE 675 Yes
VR = ventilation rate; DCV = demand controlled ventilation; Lockout = no economizing when cooling coil is active; 
DE = (integrated) differential enthalpy controls
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Table 2 Varied building parameters and their units, short names, and sampling distributions. 

 

 
 The distribution for the building envelope air-leakage coefficient C was derived from an 

analysis of empirical air leakage data, which developed a regression model for the relation 

between leakage and a building’s height and floor area (Chan, 2006). Applying that model 

yielded a separate lognormal air-leakage coefficient distribution for each office type. For all other 

parameters, the two office types had the same distributions. For occupant density, we used a 

published distribution (Rackes & Waring, 2013). For heating and cooling temperature setpoints, 

we fit our own distributions to indoor temperatures reported by the U.S. EPA’s Building 

Assessment Survey and Evaluation (U.S. EPA, n.d.; Womble et al., 1995). To do so, we assumed 

that the indoor temperature reflected an effective heating setpoint when it was higher than the 

outdoor temperature, and an effective cooling setpoint when it was lower than the outdoor 

temperature. There are no sources for statistical distributions in existing offices for envelope 

parameters, lighting and equipment power densities, and equipment efficiencies. For these, we 

relied on values used in previous sensitivity analyses (Eisenhower et al., 2012; Rackes et al., 

Type a b Lower Upper
Envelope air-leakage coefficient, small-CAV m3/s/m2/Pa0.65 - LN 3.52E-04 2.3 - -
Envelope air-leakage coefficient, medium-VAV m3/s/m2/Pa0.65 - LN 2.81E-04 2.3 - -
Wall insulation U-value W/m2·K wallU LN 0.70 3.0 0.10 6.00
Roof insulation U-value W/m2·K roofU LN 0.50 3.0 0.10 6.00
Wall thermal mass kJ/K·m2 wallCT LN 100 3.0 5 600
Window U-value W/m2·K winU U 1.00 5.80 - -
Window solar heat gain coefficient - SHGC U 0.20 0.80 - -
Day start hour of day dayStart U 5.00 9.00 - -
Day end hour of day dayEnd U 18.00 24.00 - -
Lighting power density W/m2 LPD N 10.5 10.0 0.0 -
Equipment power density W/m2 EPD N 2.7 5.0 0.0 -
Occupant density occ per 100 m2 occDens LN 5.2 1.7 1.9 14.6
Zone heating setpoint °C heatStpt N 21.5 1.5 - -
Zone cooling setpoint °C coolStpt N 24.5 1.5 - -
Unoccupied period zone setpoint setback °C stptSetback U 0.0 5.0 - -
Heating efficiency - heatEff N 0.80 0.20 0.60 1.00
Cooling coefficient of performance - coolCOP N 3.00 1.00 1.50 4.50
Fan efficiency - fanEff N 0.70 0.20 0.40 1.00
LN = lognormal distribution, a = geometric mean, b = geometric standard deviation
U = uniform distribution, a = min, b = max
N = normal distribution, a = mean, b = standard deviation

Short nameParameter
Distribution Truncation

Units
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2016), sector-wide assessments (Brandemuehl & Braun, 1999; Deru et al., 2011), and industry 

references (ASHRAE, 2013a). For day occupied start and end times and the unoccupied 

temperature setpoint setback, uniform ranges were selected to explore a reasonable space of 

interest.  

 Translating these scalar parameter values to EnergyPlus model descriptions required some 

additional implementation steps, a few of which are worth mentioning:  

• Changing the start and end of the day required adjusting a number of other schedules, 

including occupancy, lights, equipment, and the operation of the HVAC system. A 

preprocessing routine left the fractional schedule values in middle of the day as in the 

default schedule, and applied appropriate stretching and truncation to the profiles at the 

beginning and end of the day to make all schedules consistent. The HVAC system always 

turned on one hour before the occupied day start. 

• When the sampled value for heating setpoint exceeded that for the cooling setpoint, the 

average of the two was applied to both. In these instances, which were about 9% of the 

total, there was no zone setpoint deadband. 

• The unoccupied period temperature setpoint setback was applied to both heating and 

cooling zone temperature setpoints when the HVAC system was off. It was added to the 

cooling setpoint and subtracted from heating setpoint. 

• In the small-CAV office, heating efficiency corresponded to the gas burner efficiency for 

the furnace coil, while in the medium-VAV office it was the boiler thermal efficiency. 

• For the two stage DX coils in the medium-VAV office, the cooling coefficient of 

performance (COP) was applied to the high-speed stage, and the low-speed COP was 

adjusted to always be 50% higher. 
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2.2.4 Locations and climate zones 

 Probably the most important dimension varied in the Monte Carlo analysis was climate. We 

conducted simulations in 18 locations spanning the IECC/ASHRAE 90.1 U.S. climate zones. 

Sampling from these locations was weighted so that the final datasets matched the 

geographic/climate distributions of U.S. offices. Fractional representation was first set for five 

broad climate categories defined by the Building America program (Baechler et al., 2010), 

illustrated in Figure 1. According to the 2012 Commercial Building Energy Consumption Survey 

(CBECS) (U.S. Energy Information Administration (EIA), 2015a), the best available statistical 

model of the existing U.S. building stock, 13% of U.S. offices are in hot-humid areas, 14% are in 

mixed-dry or hot-dry ones, 31% are in mixed-humid climates, 3% are in marine zones, and 39% 

are in cold or very cold climates. 

 

 

Figure 1 Building America climate zones. (Image 
courtesy of the U.S. Department of Energy’s Building 
America Solution Center.) 

 

 

 The fractional makeup of IECC climate zones within each Building America climate zone 

category was based on weights derived in a previous analysis of the office stock (Jarnagin & 

Bandyopadhyay, 2010). These fractions, which were very slightly different for the two building 
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sizes, can be seen in Table 3 along with the cities used to represent each IECC zone and selected 

climate indicators for them. 

 

Table 3 Fractions of simulations in each Building America climate zone category, and fractional makeup of 
those categories by representative IECC climate zone locations, along with selected climate indicators for 
the locations. Cooling degree days (CDD) and heating degree days (HDD) used a base of 18 °C. The CDD 
and summer enthalpy residuals are explained in Section 2.2.7. 

 

 

2.2.5 Sampling, simulation, and data processing 

 The Monte Carlo analysis simultaneously varied all 18 inputs—i.e., the 17 varied building 

parameters plus the location. Such a multidimensional analysis produces more reliable and robust 

measures of impacts and sensitivity than investigations based on perturbing parameters one at a 

time (Saltelli et al., 2008). For sampling, we used quasi-random low-discrepancy sequences, 

whose good space-filling properties become particularly important in high dimensional spaces. In 

addition, the Sobol sequences (Bratley & Fox, 1988; Joe & Kuo, 2003; The MathWorks, Inc, 

n.d.) that we used are conceptually simpler and perform slightly better than Latin hypercube 

Small 
offices

Medium 
offices

Hot-Humid 12.7% Miami 1A 7.3% 13.7% 73 2,476 73.0 743 4.0 200
Houston 2A 92.7% 86.3% 786 1,667 72.4 212 9.7 186

14.2% Phoenix 2B 35.6% 28.0% 525 2,532 57.1 975 -11.2 239
Los Angeles 3B 29.3% 34.3% 714 344 47.0 -1139 -8.2 208
Las Vegas 3B 29.3% 34.3% 1,169 1,859 47.0 554 -16.0 232
Albuquerque 4B 5.8% 3.5% 2,261 749 43.0 -129 -11.1 226

Mixed-Humid 31.2% Atlanta 3A 50.7% 39.2% 1,497 1,024 62.0 -153 4.6 192
Baltimore 4A 24.6% 30.4% 2,538 683 56.6 -86 3.6 170
New York 4A 24.6% 30.4% 2,684 544 57.8 -168 5.8 163

Marine 3.0% San Francisco 3C 38.8% 41.0% 1,504 80 36.4 -1094 -15.5 196
Seattle 4C 61.2% 59.0% 2,626 99 37.7 -636 -11.8 141

38.8% Chicago 5A 29.7% 29.9% 3,506 470 52.7 79 3.0 160
Boston 5A 29.7% 29.9% 3,122 417 49.4 -124 -0.8 160
Denver 5B 20.8% 19.3% 3,302 431 40.6 -40 -9.4 190
Minneapolis 6A 15.6% 16.8% 4,202 417 49.0 298 1.2 159
Missoula 6B 1.9% 2.0% 4,157 162 35.3 26 -11.1 157
Duluth 7 2.1% 1.9% 5,236 116 41.0 402 -2.7 153
Fairbanks 8 0.3% 0.4% 7,516 40 33.2 1218 -5.0 108

Cold / 
Very cold

Hot-Dry / 
Mixed-Dry

CDD
base 

18 °C
(K·days)

Average 
summer 
enthalpy 
(kJ/kg)

CDD
residual
(K·days)

Summer 
enthalpy 
residual 
(kJ/kg)

Direct 
normal solar 

irradiance 
(W/m2)

Fraction of 
offices in 
BA zone

Building 
America (BA) 
climate zone

Location
IECC 

climate 
zone

Fraction of BA 
zone represented

HDD
base 

18 °C
(K·days)
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sampling, another quasi-random approach, both in general (Homma & Saltelli, 1996) and in 

particular for building simulation applications (Burhenne, Jacob, & Henze, 2011).  

 Each instance of an office type was defined by a unique set of sampled building parameters 

and a location. For each instance, the Baseline strategy and the six or eight alternative strategies 

(for the small-CAV and medium-VAV offices, respectively; see Table 1) were instantiated from 

templates, written to EnergyPlus input format, and simulated. Mechanical system capacities for 

all strategies were determined automatically by EnergyPlus’ auto-sizing procedure applied to the 

Baseline strategy. Therefore, while coil and fan capacities varied among instances, each given 

instance had a single mechanical system that was used consistently to evaluate all ventilation 

strategies. In post-processing, each simulated strategy’s annual cooling electricity, fan electricity, 

and heating natural gas consumption were normalized by the office’s floor area to obtain annual 

energy use intensities in kWh/m2. Then the change from the Baseline was calculated for each 

alternative strategy. These changes show the impact of an alternative ventilation strategy in terms 

of a single piece of information. Moreover, the study so-designed provides good observational 

power, with each instance representing a set of consistent experimental conditions under which 

the multiple ventilation strategies were tested and compared.  

 Tests indicated that sensitivity indicators had very good convergence properties for above 

approximately 500 unique simulations. We exceeded that significantly, conducting simulations 

for 3000 instances (with seven or nine ventilation strategies per instance) in each office type. 

These 3000 instances were sampled equally among the eighteen cities. In order to match the 

climate distribution of U.S. offices, the original simulations for each office type were bootstrap 

re-sampled 10,000 times with each location’s selection probability determined by the climate 

zone fractions listed in Table 3. The result was one 10,000-element, climate-weighted dataset for 

each office type. The weighted datasets were based on 2459 unique instances in the small-CAV 

office and 1650 in the medium-VAV office (where there were fewer usable instances because of 

the VAV control limitations discussed in the following section). The number 10,000 was selected 
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as a round number that was a reasonable compromise between avoiding excessive duplication of 

unique instances and ensuring that climate zones with smaller fractional representation would 

have more than a handful of data points. All analysis was conducted on the two climate-weighted 

datasets.  

 

2.2.6 Outdoor air limitation under VAV control 

In a substantial fraction of medium-VAV office instances, some alternative strategies did not 

operate as intended because they were, at times, limited by the total supply airflow determined by 

the VAV HVAC system. Deviation from design intent was clearest for 2×VR, and we classified 

instances as ‘VAV-limited’ if the annual geometric mean of the actual mechanical VR supplied 

by 2×VR was less than the specified mechanical VR of 18.9 L/s/occ. Compliance with design 

intent was harder to evaluate for dynamic strategies that included economizing and SR, but ability 

to meet the 2×VR strategy appeared to be a good surrogate for ability to provide higher flow rates 

generally. For example, implementing Econ+SR in San Francisco increased the VR by a median 

of 23.6 L/s/occ among instances that were not VAV-limited, but only by 3.7 L/s/occ among 

instances that were. 

 Just under 40% of medium-VAV instances were VAV-limited. As identified by logistic 

regression (Table 4), these were instances with high occupancy and frequently low cooling loads, 

due to some combination of relaxed cooling setpoints, lower internal gains, lower window solar 

gains, and milder outdoor temperatures. In other words, the systems that most frequently limited 

occupant-normalized OA flow rates (i.e., VRs) were those likely to have low occupant-

normalized supply air flow rates. In these instances, standard methods for design and control of 

VAV systems usually permitted the minimum VR of the Baseline strategy to be met, but limited 

higher VRs. Further research is needed to determine the best ways to integrate control of OA 

flow, system supply air flow and temperature, and zone-level discharge air flows and 
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temperatures to permit increased ventilation in such situations, without undesired energy or 

comfort consequences. 

 

Table 4 Logistic regression model of the probability that ventilation 
changes in the medium-VAV office will be VAV-limited. ELPD = 
EPD + LPD. 

 

 

 The scope of this investigation, however, was alternative ventilation strategies, so we only 

included the 60% of instances where OA control and VAV supply air control did not come into 

conflict, and in which all ventilation strategies performed substantially as intended. Removal of 

VAV-limited instances was done before resampling to construct the medium-VAV office’s 

weighted dataset, and as such ultimate parameter distributions were barely affected. The only 

meaningful exception was occupant density, for which removing VAV-limited observations 

reduced the mean from 5.8 to 4.5 occupants per 100 m2, and nearly eliminated instances with 

more than 10 people per 100 m2. 

 

2.2.7 Defining sensitivity analysis predictors 

 We analyzed the sensitivity of alternative strategy energy impacts to predictors that in some 

cases differed from the directly sampled inputs listed in Table 2. Additional predictors were 

defined in order to represent climate attributes, improve model fits, and normalize inputs (usually 

by building volume) to make results more intuitive and generalizable. We also defined several 

Coefficient
(raw)

Coefficient 
(standardized)

Standard error 
(standardized)

p-value

(Intercept) -39.42 -2.93 0.07 0.0000
occDens 153.2 3.58 0.09 0.0000
coolStpt 1.631 2.35 0.06 0.0000
ELPD -0.2215 -1.99 0.06 0.0000
SHGC -9.694 -1.66 0.05 0.0000
CDD -0.002077 -1.34 0.05 0.0000

logit(VAV-limited) ~ 1 + occDens + coolStpt + ELPD + SHGC + CDD

Percent correct: 87% for VAV-limited, 94% for as-intended, 91% overall
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lumped predictors, which enabled holistic recognition of some influences that appeared minor 

when spread among multiple inputs. 

 For climate, for which many annual measures are highly correlated, principal components 

analysis indicated three predictors were necessary; more would simply confound the analysis. We 

found heating and cooling degree-days (HDD and CDD), both calculated with a base balance 

temperature of 18 °C, and the average outdoor air enthalpy during the summer the best three 

metrics for capturing heating and sensible and latent cooling demands, respectively. In order to 

reduce confounding in sensitivity analysis, we allowed HDD to be the primary climate indicator, 

then successively defined linearly independent ‘residual’ CDD and summer enthalpy predictors. 

Thus the CDD residual (CDDres) was the portion of CDD not explained by a linear regression of 

CDD against HDD, namely 

CDD#$% = CDD − 1762 − 0.3911 ⋅ HDD  (1) 

and the average summer enthalpy residual (sumEnthpyRes) was the portion of average summer 

enthalpy not explained by HDD and CDD, or 

sumEnthpy#$% = sumEnthpy − 52.82 − 2.240 ⋅ HDD/1000	 + 5.792 ⋅ CDD/1000  (2) 

The values of the CDD and average summer enthalpy residuals for the 18 locations are listed in 

Table 3. In general, CDDres was negative in mild climates and positive in both hot and cold ones, 

while sumEnthpyRes was negative in dry climates and positive in humid ones.   

 Infiltration rate was used as a predictor, rather than the sampled envelope air-leakage 

coefficient C. It was calculated during post-processing of EnergyPlus results by averaging the 

time-varying infiltration air exchange rate (h−1) over all hours of the year. Infiltration was a 

stronger explanatory predictor than C because it encapsulated not merely a building’s envelope 

leakiness, but also the environmental and operating conditions to which the envelope was subject. 

Infiltration rate is also intuitive, and generalizes well because it is the air flow normalized by the 

building volume. 
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 For envelope heat transfer, a lumped parameter Kcond/V (short name: KcondPerV; units: 

W/K/m3) was defined as the building conductive heat transmission coefficient Kcond (W/K) 

(Kreider, Curtiss, & Rabl, 2009) normalized by building volume, or 

ABCDE
F =

G#CCHI#CCH + GJKLLIJKLL + GJMDECJIJMDECJ
F  (3) 

where U and A refer, respectively, to individual component U-values (W/K·m2) and areas (m2). 

The use of KcondPerV, in addition to normalizing for component areas, made more apparent the 

influence of envelope conduction, which appeared trivial when split between individual 

components. 

 The window solar heat gain coefficient was replaced with a simple lumped parameter 

Qsol,window/V (short name: winSolarPerV; units W/m3), defined as the product of the solar heat gain 

coefficient (SHGC), the window area, and the annual average direct normal solar irradiance ND 

(W/m2) available in weather files, normalized by the building volume, or 

O%CL,JMDECJ
F =

SHGC ⋅ IJMDECJND
F  (4) 

 Finally, a summed equipment and lighting power density (ELPD) replaced separate 

equipment and lighting values, and a day length predictor replaced separate day start and end 

times. Both substitutions increased model simplicity and explanatory clarity, without 

meaningfully reducing predictive power. 

 Table 5 lists and summarizes the final 16 predictors used in the sensitivity analysis. The 

statistics are based on observations in both buildings, i.e., the merged 20,000 points of each 

building type’s climate-weighted dataset. Only the four predictors included in Table 6 were 

meaningfully different in the two offices. That is, the infiltration rate, the building conductive 

heat transfer coefficient per volume, and the window solar gain per volume were all higher in the 

small-CAV office, because of its much greater envelope-to-volume ratio. Occupant density, on 
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the other hand, was somewhat lower in the medium-VAV office because more densely occupied 

offices were more likely to be classified as VAV-limited and therefore removed. 

 

Table 5 Building and climate parameters used as predictors in sensitivity analysis, with their units and short 
names. The mean, standard deviation (SD), and selected percentiles (prefix “p”) are shown for the 
combined dataset for both offices. 

 

 

Table 6 Statistics for each office type for the only four predictors that varied meaningfully between the two 
office types. These mean and standard deviation (SD) values were not used for standardization in 
regression models. 

 

 

2.3 Results and discussion 

 The results are organized from general to specific, as follows. Section 2.3.1 briefly 

summarizes the Baseline strategy’s energy use intensity results for context. Section 2.3.2 provides 

an overview of the alternative ventilation strategies’ energy impacts, and Section 2.3.3estimates 

the aggregate energy saving potential in a large segment of the U.S. office stock. Section  2.3.4 

Parameter Units Short name Mean SD p5 p25 Median p75 p95
Heating degree days, base 18 °C. K·days HDD 2,308 1,221 530 1,156 2,566 3,267 4,147
Cooling degree days (base 18 °C) residual K·days CDDres 0 431 -1,024 -180 -14 203 797
Summer enthalpy residual kJ/kg sumEnthpyRes 0.0 7.6 -14.4 -6.0 2.1 5.3 10.1
Infiltration air exchange rate h-1 infAER 0.38 0.38 0.04 0.12 0.25 0.50 1.16
Conductive heat transfer coefficient per volume W/K/m3 KcondPerV 0.45 0.33 0.14 0.23 0.35 0.57 1.13
Wall thermal mass kJ/K·m2 wallCT 136 125 16 45 93 186 414
Window solar gain per volume W/m3 winSolarPerV 3.8 1.5 1.6 2.6 3.6 4.7 6.5
Day length hours per day dayLen 13.9 2.1 10.4 12.4 13.9 15.5 17.4
Combined LPD and EPD W/m2 ELPD 19.3 9.0 6.1 12.6 18.5 25.1 35.1
Occupant density occ per 100 m2 occDens 5.1 2.3 2.3 3.4 4.6 6.3 9.9
Zone heating setpoint °C heatStpt 21.5 1.4 19.1 20.6 21.5 22.4 23.8
Zone cooling setpoint °C coolStpt 24.3 1.4 22.1 23.3 24.3 25.3 26.8
Unoccupied period zone setpoint setback °C stptSetback 2.5 1.4 0.3 1.3 2.6 3.8 4.8
Heating efficiency - heatEff 0.80 0.11 0.63 0.71 0.80 0.89 0.97
Cooling coefficient of performance - coolCOP 3.02 0.74 1.79 2.45 3.02 3.60 4.24
Fan efficiency - fanEff 0.70 0.15 0.46 0.59 0.70 0.81 0.95

Parameter Units Short name Office type Mean SD p5 p25 Median p75 p95
h-1 infAER Small-CAV 0.53 0.46 0.06 0.18 0.39 0.72 1.51

Medium-VAV 0.23 0.19 0.03 0.09 0.17 0.31 0.64
W/K/m3 KcondPerV Small-CAV 0.64 0.36 0.25 0.39 0.55 0.80 1.36

Medium-VAV 0.26 0.12 0.11 0.18 0.24 0.32 0.50
W/m3 winSolarPerV Small-CAV 4.4 1.6 1.9 3.0 4.3 5.6 7.1

Medium-VAV 3.2 1.1 1.4 2.3 3.2 4.0 4.9
occDens Small-CAV 5.8 2.6 2.5 3.7 5.2 7.3 11.1

Medium-VAV 4.5 1.8 2.3 3.2 4.2 5.5 7.9

occ per 
100 m2

Infiltration air exchange 
rate

Conductive heat transfer 
coefficient per volume

Window solar gain per 
volume

Occupant density
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examines selected results by climate zone category. Sections 2.3.5–2.3.7 turn to detailed 

sensitivity analysis of climate and building parameters. Section 2.3.8 applies sensitivity analysis 

results to answer some specific ventilation strategy questions, and 2.3.9 discusses implications for 

high performance buildings. Finally, Section 2.3.10 describes the spreadsheet implementation of 

accurate models to estimate energy impacts provided as Supplementary Information with the 

published article version of the chapter. 

 Most discussion focuses on the principal strategies designed to save energy: Econ, D950, and 

Econ+D950 in the small-CAV office, and those three plus Econ+SR and Econ+SR+D950 in the 

medium-VAV office. Overview and sensitivity analysis results are given for EconLock, 2×VR, 

Econ+D675, and Econ+SR+D675, but they are discussed less. Economizing with lockout 

(EconLock) nearly always saved less than differential enthalpy economizing (Econ), and 2×VR 

would generally be implemented for work performance and absenteeism benefits (Fisk et al., 

2012), not energy savings. Both EconLock and 2×VR are discussed in in depth strategy analysis 

in Section 2.3.8. In terms of energy savings, Econ+D675 and Econ+SR+D675 never performed 

better than Econ+D950 or Econ+SR+D950, respectively, but provided a substantial fraction of 

the maximum savings, and are discussed in detail in a Chapter 3. 

 For much of the treatment, HVAC natural gas and electricity energy use were combined into 

a single value for HVAC source (or primary) energy use. To do so, we used the national average 

site-to-source energy conversion factors used by the U.S. EPA, which are 3.14 and 1.05 source 

kWh per site kWh for electricity and natural gas, respectively (U.S. EPA, 2013). Because in the 

U.S. the ratio of average site-to-source conversion factors for electricity and natural gas is nearly 

identical to the ratio of average electricity and natural gas prices—$0.1086 per kWh for 

electricity and $0.0375 per kWh natural gas, based on average consumption-weighted U.S. prices 

in all states from 2005–2014 (U.S. Energy Information Administration (EIA), n.d.-e, n.d.-g, n.d.-

f, n.d.-a))—changes in source energy use are a very good proxy for changes in energy operating 
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costs. To estimate cost impacts from source energy impacts, one can multiply by $0.035 per kWh, 

or estimate $1 saved for every approximately 30 kWh of source energy reduction. 

 

2.3.1 Baseline energy consumption 

 Table 7 summarizes the annual energy consumption of the Baseline strategy to provide 

context for the remainder of the paper. In general, the medium-VAV office consumed somewhat 

less energy. The largest and most consistent reason for this was less heating gas use, which 

accounted for 45% of HVAC source energy consumption in the small-CAV office type but only 

25% in the medium-VAV office. In the hottest areas, the small-CAV office type also consumed 

more electricity for cooling. In both offices, total HVAC electricity consumption was about 

evenly split between cooling and fans.  

 Figure 2 illustrates the Baseline strategy natural gas and electricity annual use intensities in 

individual cities. For comparison, the background indicates the median (dark green line) and 25–

75th percentile interval (green shading) of the use intensities derived from real consumption data 

in the 2003 CBECS, the most recent year for which energy consumption was available (U.S. 

Energy Information Administration (EIA), 2006a). The CBECS data were restricted to offices 

and divided into the five broad climate classifications used in 2003, but not differentiated by size 

(since that resulted in too few data points in some bins). Lack of size resolution probably helps 

explain why natural gas consumption was sometimes on the higher side of the CBECS reference 

range for the small-CAV office, and on the lower side of it for the medium-VAV one. There are 

many other good reasons to expect some differences between 2003 CBECS end-use intensities 

and our modeled results, such as independent variation of all parameters in our study, significant 

changes in lighting and equipment power density in the past thirteen years, and the uncertain 

assumptions in the CBECS end-use estimates themselves. Overall, though, the modeled baselines 

matched the reported office sector estimates quite well. 
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Table 7 Baseline ventilation strategy annual energy use intensity statistics for 
the two model typologies, for weighted datasets over the U.S. The prefix “p” 
indicates percentile. 

 

 

 
Figure 2 Boxplots of HVAC natural gas and electricity usage in the two offices by city. The green shaded 
area in the background shows CBECS 25–75th percentile span, and the line in the middle of it is the 
CBECS median. These references are the same in (a) and (b), and based on only offices and divided into 
the five broad climate bins used in 2003 CBECS. 
 

2.3.2 Overview of alternative strategy energy impacts 

 Table 8 shows median and 95% data intervals for the changes in energy consumption 

intensity under the six strategy alternatives in the small-CAV office. Herein, the ‘95% data 

Small-CAV
HVAC natural gas
HVAC electricity
Cooling electricity
Fan electricity
HVAC site energy
HVAC source energy

Mean SD p5 p25 Median p75 p95

111 100 5 34 87 158 305
51 30 17 30 45 64 111
27 21 5 13 21 35 69
24 13 9 16 22 30 48

162 103 43 89 140 210 353
278 137 96 185 254 349 523

Baseline annual energy use intensity, kWh/m2

Medium-VAV
HVAC natural gas
HVAC electricity
Cooling electricity
Fan electricity
HVAC site energy
HVAC source energy

45 38 1 15 37 65 115
48 20 23 34 44 59 87
26 14 11 17 23 32 52
22 10 10 15 20 27 42
93 44 35 60 86 118 173

199 78 93 145 185 244 342
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interval’ or 95% DI is the interval bounded by the 2.5th and 97.5th percentiles of a set of data. 

The D950 strategy saved the most natural gas but typically little electricity, while Econ saved 

some electricity but no natural gas. The combined Econ+D950 had the maximum source energy 

savings of any strategy 98% of the time. At the median, it saved 28 kWh/m2 of source energy, 

and at the top of the 95% DI, it saved up to 72 kWh/m2. In percent terms, Econ+D950 reduced 

HVAC source use intensity by 11% at the median (95% DI: 5–25% savings). The final row of 

Table 8 shows the fraction of maximum savings each strategy provided. On average, D950 alone 

achieved about two-thirds, and Econ alone about one-third, of the source energy consumption 

reductions of Econ+D950.  

 

Table 8 For the small-CAV office, median and 95% data intervals (DI) for each strategy’s change from the 
baseline for natural gas, electricity, and source energy in annual kWh/m2, as well as in percent of baseline 
for source energy. Negative changes indicate energy saved. Also shown are the frequency that each strategy 
yielded maximum savings in source energy and the average fraction of the maximum possible savings each 
strategy achieved. 

 

 

 Table 9 lists analogous impacts in the medium-VAV office. As with the small-CAV office, 

the greatest energy savings nearly always came from the strategy with the most ventilation 

technology components. For the medium-VAV office, this was Econ+SR+D950, which 

substantially reduced both natural gas and electricity use, for a median total source use intensity 

reduction of 50 kWh/m2 and reductions up to 124 kWh/m2 within the 95% DI. In percent terms, 

Econ+SR+D950 saved 27% of HVAC source energy at the median (95% DI: 6–42% savings). 

Most savings could be realized without the use of the DCV component, however, with Econ+SR 

EconLock Econ D950 Econ+
D950

2×VR Econ+
D675

Median (95% DI) natural gas change, kWh/m2 1 (0, 2) 1 (0, 2) -12 (-53, -1) -12 (-53, 0) 16 (1, 72) -5 (-37, 7)

Median (95% DI) electricity change, kWh/m2 -2 (-8, 0) -3 (-10, 0) 0 (-5, 1) -4 (-13, -1) 1 (-2, 6) -3 (-11, 0)

Median (95% DI) source energy change, kWh/m2 -5 (-23, 0) -7 (-32, 0) -16 (-57, 0) -28 (-72, -8) 21 (1, 75) -18 (-54, 3)

Median (95% DI) source energy % change, % -2 (-10, 0) -3 (-16, 0) -6 (-20, 0) -11 (-25, -5) 9 (1, 29) -7 (-18, 1)

Frequency strategy had maximum source savings 0% 0% 1% 98% 0% 0%

Average fraction of maximum savings 0.22 0.31 0.62 1.00 0.00 0.66
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having a median and 95% DI only marginally lower than those of Econ+SR+D950, and capturing 

84% of the savings of the more complex strategy on average. 

 

Table 9 For the medium-VAV office, median and 95% data intervals (DI) for each strategy’s change from 
the baseline for natural gas, electricity, and source energy in annual kWh/m2, as well as in percent of 
baseline for source energy. Negative changes indicate energy saved. Also shown are the frequency that 
each strategy yielded maximum savings in source energy and the average fraction of the maximum possible 
savings each strategy achieved. 

 

  

 There were three important differences between the two offices types. First, economizing 

saved much more energy in the medium-VAV office, on the order of 2–3 times the savings 

observed in the small-CAV office. This greater savings potential was partially due to envelope-to-

volume ratio differences, but mostly to the fact that supply air temperature is maintained 

consistently low in multizone air distribution systems, increasing opportunities for economizing. 

Second, SR was available as a strategy, and SR nearly always saved significant energy in both 

heating and cooling. Comparing Econ+SR to Econ, the addition of SR approximately doubled the 

source energy savings generated by an economizer alone. Third, DCV was not typically a useful 

strategy in the medium-VAV office. By itself, it was about as likely to increase source energy 

consumption as decrease it. Even with other components, DCV did not provide large additional 

energy savings, at least in terms of the median or average. In sum, the much greater savings from 

economizing, additional large savings from SR, and sharply reduced savings potential of DCV in 

the medium-VAV office combined to yield source energy savings opportunities that were about 

twice the magnitude of those available in the small-CAV office. 

 

EconLock Econ Econ+SR D950 Econ+
D950

Econ+SR+
D950

2×VR Econ+SR+
D675

Median (95% DI) natural gas change, kWh/m2 -1 (-4, 0) -1 (-4, 0) -13 (-36, 0) 0 (-5, 1) -2 (-9, 0) -18 (-42, 0) 4 (0, 24) -13 (-38, 0)

Median (95% DI) electricity change, kWh/m2 -5 (-15, 0) -6 (-18, -1) -9 (-27, -1) 1 (-3, 5) -7 (-19, -2) -9 (-28, -2) 0 (-3, 9) -8 (-26, 1)

Median (95% DI) source energy change, kWh/m2 -17 (-49, 0) -22 (-61, -4) -43 (-117, -4) 3 (-11, 14) -26 (-65, -7) -50 (-124, -9) 8 (-6, 31) -41 (-115, 2)

Median (95% DI) source energy % change, % -9 (-19, 0) -11 (-23, -3) -24 (-41, -3) 2 (-5, 6) -14 (-24, -7) -27 (-42, -6) 4 (-4, 15) -23 (-40, 1)

Frequency strategy had maximum source savings 0% 0% 0% 0% 4% 95% 0% 0%

Average fraction of maximum savings 0.32 0.44 0.84 0.04 0.56 0.99 0.01 0.77
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2.3.3 Aggregate office sector energy and expenditure savings 

 Before investigating the sensitivity of the energy savings to variations in the input 

parameters, we demonstrate the large potential of alternative ventilation strategies to save energy 

across the U.S. office sector. To do so, we used the small-CAV office results to represent the 296 

million m2 of floorspace in offices less than 930 m2 (10,000 ft2), and the medium-VAV office to 

represent the 800 million m2 of floorspace in offices between 930 m2 and 18,590 m2 (200,000 ft2) 

(U.S. Energy Information Administration (EIA), 2015c). These two estimates cover 74% (or 

1,095 million m2) of U.S. office floorspace in small to medium-large offices, but exclude possible 

benefits in the 26% of floorspace in high-rise and extremely large offices beyond the scope of our 

modeling domain. Under the Baseline strategy, this segment of the office sector was estimated to 

use 241 TWh of primary energy annually, at a total cost of $8.4 billion (using average 

consumption-weighted electricity and natural prices in all U.S. states from 2005–2014 (U.S. 

Energy Information Administration (EIA), n.d.-e, n.d.-g, n.d.-f, n.d.-a)). If all represented offices 

started from the Baseline and moved to the alternative with the greatest energy savings, the 

aggregate annual source energy savings would be 53 TWh, or a 22% reduction of all primary 

energy consumed by HVAC end-uses. Energy costs would be reduced by the same percent, at a 

value of $1.84 billion. 

 

Table 10 Aggregate impacts over all small to medium-large 
U.S. offices, which represent about three-quarters of office 
floorspace. Untapped savings account for the technologies’ 
estimated current market penetration. 

 

 

Aggregate U.S. small
to medium-large
office sector:

Sector total, 
under 

Baseline

Savings, 
starting from 

Baseline

Untapped 
savings

HVAC source energy 
consumed (TWh) 241 53 36

HVAC energy cost 
(billion $) 8.43 1.84 1.25
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 Of course, not all offices currently operate with the Baseline strategy, so we also estimated 

the untapped market potential, only counting the portion of floorspace not yet penetrated by 

component technologies. Current economizer adoption rates, from CBECS 2012, were 9% for 

small offices and 44% for medium to medium-large offices (U.S. Energy Information 

Administration (EIA), 2015c, 2015b). For DCV and SR penetration, which CBECS does not ask 

about, we relied on survey information from building industry professionals, limited only those 

referring to offices (N = 67) (Hamilton et al., 2016). These indicated 33% adoption for DCV and 

37% for SR, among recent projects. There is more uncertainty in these adoption rate estimates for 

DCV and SR, given the small sample and the self-reported nature of the survey. Results indicated 

that most (68%) of the total theoretical savings potential judged against the Baseline strategy 

appeared to be untapped, with 36 TWh of annual primary energy savings still available across the 

sector even after accounting for current technology adoption rates. Such savings would represent 

16% of all primary energy consumed by HVAC end-uses. 

 The small-CAV segment represented 27% of the small to medium-large stock’s floorspace, 

and even more (34%) of baseline energy use. However, in terms of savings from alternative 

ventilation strategies, it was a significantly less attractive target, accounting for only 17% of 

theoretical savings (from the Baseline strategy) and 20% of untapped potential. Therefore, at the 

coarsest level, medium and larger offices with multizone distribution systems should be more 

immediate targets for market actors and policymakers interested in realizing energy savings from 

these alternative ventilation strategies. 

 

2.3.4 Energy impacts by climate zone 

 Our Monte Carlo investigation also enabled much finer analysis, providing insights to target 

the most promising savings opportunities in both office types. We first examine the principal 

energy-saving strategies’ results in each of the five broad Building America climate zone 
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categories. For the small-CAV office, Figure 3 shows the ranges of annual HVAC source energy, 

natural gas, and electricity changes observed for Econ, D950, and Econ+D950. Economizer 

electricity savings were similar in hot-humid, mixed-humid, and cold climates, and substantially 

higher in hot-dry/mixed-dry and marine climates. Savings from DCV were almost entirely from 

natural gas for heating, and much greater in cold climates. Only in hot-humid locations did DCV 

consistently save electricity, and in all other climates it frequently increased electricity use by 

reducing free cooling.  

 

 
Figure 3 Ranges of HVAC source energy, natural gas, and electricity from implementing three alternative 
ventilation strategies in the small-CAV office, divided by five broad Building America climate zones. (See 
Table 3 for cities in each zone.) 
  

 

 Combining economizer with DCV eliminated this unintended consequence, so Econ+D950 

never increased energy use. The two components’ source energy savings were largely additive. In 

hot-humid, mixed-humid, and especially cold climates, DCV made up the larger part of combined 

Econ+D950 source energy savings, and could potentially be more cost-effective to implement on 

its own. On the other hand, in hot-dry/mixed-dry and marine climates, D950 alone was less 
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attractive, both because economizer was more beneficial and because DCV without economizer 

control override could increase energy use there. 

 For the medium-VAV office, Figure 4 shows the impacts of Econ, D950, Econ+D950, 

Econ+SR, and Econ+SR+D950. Comparison to small-CAV results in Figure 3 again confirms 

that alternative strategies in the medium-VAV office typically saved significantly greater source 

energy. (Note that source energy and electricity have larger scales in Figure 4 than in Figure 3.) 

This source energy difference was the combined effect of slightly smaller natural gas reductions 

and much larger electricity savings, due to the three important broad differences already 

identified between the two office types: in the medium-VAV office economizer saved much more 

energy, SR was applicable and saved significant energy, and DCV savings were minor (and, to an 

even greater extent than in the small-CAV office, D950 alone often increased electricity use by 

reducing free cooling.) Thus, for example, the combined Econ+D950 strategy happened to have 

similar source energy savings in both office types, but economizing and not DCV accounted for 

nearly all of them in the medium-VAV office—for which, in any case, the strategies Econ+SR 

and Econ+SR+950 saved far more energy. 

 Within these broad conclusions, medium-VAV office impacts did vary by climate. 

Economizer and SR savings, both independently and together, rose consistently as the climate 

zones’ cooling demands decreased. This was true for both natural gas and electricity savings from 

SR, reflecting significant potential for reducing both primary cooling and zone reheat energy in 

all but a small minority of instances in the very hottest climates. The potential benefits of moving 

from Econ+SR to Econ+SR+D950 were subtler, with small increases in electricity savings in 

hotter climates, and small increases in natural gas savings in colder ones. (More specific detail on 

the latter two questions can be found in Section 2.3.8.) 
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Figure 4 Ranges of HVAC source energy, natural gas, and electricity from implementing five alternative 
ventilation strategies in the medium-VAV office, divided by five broad Building America climate zones. 
(See Table 3 for cities in each zone.) 
 

2.3.5 Sensitivity analysis tools 

 To quantitatively assess the influence of building and climate parameters on the alternative 

ventilation strategies’ energy impacts, we turn to sensitivity analysis based on linear regression, 

which captures first-order effects well and is clear and intuitive. (More precise models that 

include nonlinear and interaction effects are available in the Supplementary Information to the 

published article version of this chapter, as described in Section 2.3.10). The linear regression 

model with standardized predictors for response y is 

S = TU + TVWV
V

+ X = 	TU + TV
YV − ZV
[VV

+ X (5) 

where ε is an error term, zi is the standardized value of predictor xi obtained by subtracting the 

mean µi and dividing by the SD σi. Sensitivity was assessed by the coefficient βi, herein called the 
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standardized effect. The constant term β0 is the response when all predictors are at their means. 

Though separate regression analyses were conducted for each office, the same µi and σi values 

were used for both offices to allow consistent comparisons. These µi and σi values are in Table 5, 

but are also provided in the result tables in this section for easy reference. 

 Here, the response y was the change from the Baseline in source energy use intensity owing 

to alternative strategy adoption, with positive changes indicating increased energy use compared 

to the Baseline strategy, and negative changes representing energy savings. Therefore, a negative 

constant term β0 indicates the strategy saved energy when all predictors were at the standardizing 

mean values. A negative standardized effect for a predictor means that on average more energy 

was saved when that predictor had higher values. Further, as Equation (5) shows, βi is the average 

change that a change of σi in predictor i has on source energy changes in real units of kWh/m2 

(Lattin, Carroll, & Green, 2002).  

 To make it clearer when parameters had truly negligible impact, a pruning routine tested the 

impact of removing each parameter from a regression model and did so if it increased the model’s 

root mean square error (RMSE) by less than 1%. To rank the influence of predictors, we used a 

sensitivity index (SI) based on the square of the standardized regression coefficient, which gives 

an estimate of the fraction of variance accounted for by variation in that parameter (Saltelli et al., 

2008). (For this statistic only, we used separate predictor standard deviations for each office type, 

rather than the ones for the combined dataset.) A ‘weighted SI’ combined results for the six or 

eight alternative strategies by averaging their SI values, with each strategy weighted by the 

variance of the energy changes it produced. These variance-based weights preserve the 

interpretation that the weighted SI indicates the fraction of variance, across all strategies, for 

which a predictor accounted. With coefficients of determination (R2) between 0.6 and 0.8, the 

regression models accounted for 60–80% of the variance in source energy use intensity, 

depending on the strategy.  
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2.3.6 Small-CAV office sensitivity analysis 

 Table 11 shows the results of the regression sensitivity analysis for the small-CAV office. 

Seven building predictors—occupant density, the infiltration rate, the day length, ELPD, and 

heating and cooling setpoints and efficiencies—plus HDD explained 68% of the variance in 

ventilation strategy impacts. Occupant density and HDD alone accounted for nearly 40% of 

variance, because of their decisive influence on heating energy savings, which is illustrated in 

Figure 5a. Similarly, as Figure 5b shows, whether economizer saved significant energy could 

largely be predicted by internal gains and the cooling setpoint. 

 

Table 11 Small-CAV office sensitivity analysis results. Values are coefficients of linear 
regressions against standardized predictors, and indicate the average change in a strategy’s 
impact in kWh/m2 produced by a change of σ in the predictor. Negative changes represent 
energy savings. The constant is the change in the outcome produced by the strategy when all 
predictors are at the values in the µ column.  

 

 

EconLock Econ D950
Econ+
D950 2×VR

Econ+
D675

Constant - - - -6.0 -8.3 -16.6 -26.9 22.8 -16.0
occDens 5.1 2.3 26% - - -6.8 -7.6 12.0 -
HDD 2,308 1,221 13% - - -6.2 -6.4 8.3 -3.2
infAER 0.38 0.38 8% 0.5 0.7 -3.7 -2.8 0.8 -6.7
dayLen 13.9 2.1 5% -1.1 -1.2 -3.2 -4.7 4.2 -3.3
coolStpt 24.3 1.4 4% 2.6 3.4 - 4.2 - 3.6
ELPD 19.3 9.0 4% -2.9 -4.0 1.8 -3.0 -1.7 -3.5
heatStpt 21.5 1.4 4% -0.7 -1.1 -2.8 -4.1 3.7 -2.4
coolCOP 3.02 0.74 3% 2.2 2.8 - 3.9 -0.9 2.8
heatEff 0.80 0.11 2% - - 2.4 2.2 -3.1 1.2
KcondPerV 0.45 0.33 2% -1.7 -2.2 - -2.2 - -2.2
sumEnthpyRes 0.0 7.6 1% 0.6 1.2 -2.6 - 2.9 -
CDDres 0 431 1% 1.0 1.7 -2.2 - 2.5 1.3
winSolarPerV 3.8 1.5 1% -1.3 -1.9 1.2 -1.0 -1.4 -1.9
RMSE (R2) - - - 3.6 (0.68) 4.7 (0.70) 7.5 (0.74) 8.7 (0.74) 8.9 (0.80) 9.2 (0.62)
Weight - - - 3% 6% 18% 23% 32% 18%

Predictor Weighted 
SI

Note: the pruning routine eliminated wallCT, fanEff, and stptSetback from all strategies' models.

µ σ
Standardized effect size (kWh/m2)
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Figure 5 In the small-CAV office, (a) gas savings from D950, as a function of HDD and occupant density, 
and (b) electricity savings, as a function of the cooling setpoint and ELPD. Note the color scales are for site 
energy intensity units. 
 

 Detailed results, organized by predictor category, included: 

• Climate variables: The number of HDD was so important because of its strong influence 

on heating energy, particularly on reductions from DCV and increases from doubling 

ventilation. In climates that were also hotter than average given HDD, and more humid 

than average given HDD and CDD, there were also fewer savings from economizing, 

more savings from DCV, and greater energy use increases from doubling ventilation. The 

residual climate effects not explained by HDD, however, were a small fraction of the 

effects associated with HDD. 

• Envelope: Infiltration was an important influence on strategies with DCV, since, along 

with occupant density, it determined by how much mechanical ventilation could be 

reduced without exceeding the CO2 setpoint. Other envelope characteristics, however, 

played a small role, with the lumped building conductive heat transfer coefficient and the 

window solar gain parameter (mostly based on the SHGC) ranked as the two least 

influential predictors that were not pruned, and the thermal mass of exterior walls pruned 

from all models. 

• Occupancy: Along with HDD, occupant density decisively influenced heating energy 

changes, particularly for 2×VR and for strategies with DCV. (Occupant density also 

influenced increases in electricity use from doubling ventilation, but very weakly.) The 
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length of the day was also quite important, with each ~2 hours of additional operating 

time increasing a given energy impact by about 20%, on average, for all strategies. 

• Gains: The equipment and lighting power density was the most important single 

predictor of economizer savings, which increased as ELPD increased. Solar gains, via the 

lumped window solar gain, were also associated with economizer savings, but much less 

strongly. (Increases in both types of gains reduced DCV savings, too, but the effects were 

modest.) 

• Setpoints: A tight control range for indoor temperatures increased the impact of 

alternative strategies on energy use. Lower cooling setpoints significantly increased 

savings of strategies with economizers, while higher heating setpoints enhanced energy-

saving potential of strategies with DCV (and the energy impacts of doubling ventilation). 

As an example, an office with a zone temperature control range of 22–23 °C would save 

about 12 kWh/m2 per year more on average from Econ+D950 than one with a more 

relaxed 20–25 °C allowable range. However, the unoccupied temperature setback had no 

meaningful influence on ventilation strategy impacts. 

• Efficiencies: As would be expected, impacts were smaller on average for more efficient 

mechanical systems. Interestingly, cooling COP was most important, and heating 

efficiency much less so. Fan efficiency, in this CAV system, had negligible influence. 

 

2.3.7 Medium-VAV office sensitivity analysis 

 Table 12 shows the results of the regression sensitivity analysis for the medium-VAV office. 

Because of the multizone distribution and VAV control of the building, and the fact that SR was a 

dominant energy-saving technology component, results were most sensitive to zone temperature 

setpoints and climate.  Just five building predictors—the three setpoints, the cooling coil COP, 

and the infiltration rate—plus HDD accounted for 64% of alternative strategy impacts’ variance.  
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Table 12 Medium-VAV office sensitivity analysis results. Values are coefficients of linear regressions 
against standardized predictors, and indicate the average change in a strategy’s impact in kWh/m2 produced 
by a change of σ in the predictor. Negative changes represent energy savings. The constant is the change in 
the outcome produced by the strategy when all predictors are at the values in the µ column.  

 

 

 Results for all predictors, by category, included: 

• Climate variables: HDD was again a critical influence on potential heating and cooling 

savings, with greater savings from economizing and SR in colder climates. Furthermore, 

the CDD and average summer enthalpy residuals indicated that economizing and SR 

were even less effective (and doubling ventilation more energy intensive) in the hottest 

and most humid locations. 

• Envelope: Infiltration was less influential overall than in the small-CAV office, but 

strategies with SR and DCV saved more heating energy in leakier buildings. The lumped 

building conductive heat transfer coefficient was more important in the medium-VAV 

office than in the small-CAV one, because less insulated envelopes (leading to greater 

load diversity among zones) were associated with greater SR savings.  

EconLock Econ Econ+SR D950
Econ+
D950

Econ+SR+
D950 2×VR

Econ+SR+
D675

Constant - -21.6 -27.6 -61.0 2.2 -33.4 -68.9 10.7 -59.6
heatStpt 21.5 1.4 17% -5.0 -5.8 -14.2 0.9 -5.6 -14.0 - -13.7
HDD 2,308 1,221 14% -7.5 -7.4 -10.9 4.1 -6.1 -11.8 - -10.9
stptSetback 2.5 1.4 13% 4.3 4.9 12.0 - 4.8 12.1 - 11.8
coolCOP 3.02 0.74 9% 4.3 5.8 9.2 -0.7 6.7 9.9 - 8.5
coolStpt 24.3 1.4 7% 4.0 4.7 8.6 - 5.2 9.0 - 8.0
infAER 0.38 0.38 3% - - -8.5 - -3.0 -11.9 - -17.1
winSolarPerV 3.8 1.5 3% -3.3 -4.6 -7.7 - -4.4 -7.2 -1.4 -6.4
KcondPerV 0.5 0.3 2% -4.9 -5.4 -15.5 - -4.8 -15.0 - -14.2
ELPD 19.3 9.0 2% -2.3 -3.9 -3.2 - -4.1 -2.8 -1.2 -3.7
CDDres 0 431 2% - 1.0 4.0 -1.7 - 2.5 3.8 4.8
occDens 5.1 2.3 1% 1.5 2.0 2.8 -0.9 - - 7.3 4.9
sumEnthpyRes 0.0 7.6 1% - 2.0 2.0 -1.3 - - 3.8 2.8
fanEff 0.70 0.15 1% 1.2 1.6 2.5 - 1.6 2.2 - 2.3
heatEff 0.80 0.11 0% - - 1.7 - - 2.1 -0.8 1.5
dayLen 13.9 2.1 0% 1.3 - - - - - 1.3 -
RMSE (R2) - 6.5 (0.76) 7.0 (0.78) 14.5 (0.76) 3.5 (0.66) 7.0 (0.78) 14.3 (0.78) 5.9 (0.63) 14.6 (0.77)
Weight 5% 7% 25% 1% 6% 26% 3% 27%

Predictor
Weighted 

SI

Note: the pruning routine eliminated wallCT from all strategies' models.

Standardized effect size, kWh/m2

µ σ
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• Occupancy: In a stark contrast to the small-CAV office, neither occupant density nor the 

length of the occupied day strongly influenced the medium-VAV alternative ventilation 

strategy energy impacts. The only exception was occupant density’s influence on the 

energy impact of 2×VR. 

• Gains: Higher solar gains were associated in particular with larger energy savings from 

SR, leading them to be more important than internal gains in the medium-VAV office 

(unlike in the small-CAV office). Solar gains only affect perimeter zones, and SR can 

typically save more energy in situations where there is greater zone load diversity. 

Furthermore, although ELPD had almost the same standardized effect for Econ in both 

offices, it was much less relatively influential in the medium-VAV office because 

economizing did not require high internal gains to be beneficial.  

• Setpoints: Higher heating setpoints, lower cooling setpoints, and smaller unoccupied 

period setbacks all led to larger alternative strategy impacts on energy use; together the 

three indoor air temperature control variables accounted for 38% of strategies’ variance. 

Unlike in the small-CAV office, the zone temperature setpoint setback for unoccupied 

periods was influential, because the setback determined how frequently the HVAC 

system had to operate on weekends and holidays. (Unoccupied period control mattered 

little in the small-CAV office, where strategies’ energy savings depended on occupants 

being present or high internal gains.) 

• Efficiencies: Impacts were again smaller on average for more efficient mechanical 

systems, with cooling COP emerging as extremely important for both economizer and SR 

impacts. At least in this linear analysis, neither fan efficiency (despite the variable speed 

fan) nor heating efficiency (even though SR saved significant heating energy) registered 

as meaningful.  
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 Figure 6 illustrates some of the most important influences for Econ+SR, which captured the 

bulk of the significant savings frequently available in the medium-VAV office. Figure 6a shows 

the influence of the heating setpoint and HDD on gas savings, which were greatest for buildings 

with heating setpoints greater than 20 °C in climates colder than about 1000 K·days. Figure 6b 

shows the role of CDD and COP on electricity savings, which were quite limited in the very 

hottest climates and also reduced with highly efficient cooling coils. 

 
 

 
Figure 6 (a) Econ+SR gas savings vs. heating setpoint, colored by HDD; and (b) Econ+SR electricity 
savings vs. cooling COP, colored by CDD. 
 

2.3.8 Specific strategy questions 

2.3.8.1 Small-CAV office: When to use Econ vs. D950 vs. Econ+D950? 

 According to the sensitivity analysis, in the small-CAV office, characteristics most likely to 

lead to significant economizing benefit were higher ELPD, lower cooling setpoint, lower COP, 

and more transmissive envelope both in terms of higher heat transfer coefficients and higher 

window solar gains. Savings were also greater when all climate indicators were lower (but no one 

indicator was decisive). Savings from DCV were greater when HDD, occupant density, 

infiltration, and summer enthalpy were higher, and window solar gains were lower. Thus, 

economizer and DCV savings were to some extent in conflict, with economizer more beneficial 

for buildings with high gains located in mild climates, and DCV more apt for buildings with low 

gains and in climates with cold winters and/or hot and humid summers. 
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 Figure 7 illustrates that economizing and DCV were, indeed, most attractive in different 

regions of the parameter space, an observation in line with previous analyses for offices 

(Brandemuehl & Braun, 1999) and in a school (Lawrence & Braun, 2007). The reference lines in 

red are at 12.5 kWh/m2, which is 5% of the median baseline HVAC source energy intensity. A 

quarter of the time neither strategy saved above the threshold, while 51% of the time only D950 

exceeded it and another 11% only Econ did so. Only 13% percent of offices were in the upper 

right quadrant, where Econ and D950 each saved more than 12.5 kWh/m2.   

 

 
Figure 7 Source energy savings of D950 vs. those of 
Econ. The red lines are at 12.5 kWh/m2, or about 
5% of the median baseline HVAC source energy use 
intensity. Savings from D950 were closely 
associated with heating degree days (HDD), but 
economizer savings were not. 

 

 However, the rationale for combining the two components into one strategy (i.e., 

Econ+D950) was stronger than Figure 7 suggests, since economizing also eliminated DCV’s 

unintended reduction of free cooling. Thus, about one-fourth of instances benefitted meaningfully 

from Econ+D950, meaning they saved at least 12.5 kWh/m2 more with the combined strategy 

than they did with either Econ or D950 alone. The instances where Econ+D950 was most 

attractive were defined by the characteristics whose influence on economizing and DCV were not 

in conflict: low cooling setpoints, low COP, high ELPD, high occupant density, and high building 

heat transfer coefficients. This combination characterizes buildings that use cooling energy 
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intensely because of internal and solar gains, an exacting comfort zone, and inefficient 

equipment—regardless of the climate dimension that is so highly influential on DCV savings. 

 

2.3.8.2 Medium-VAV office: When to add DCV to Econ+SR? 

 In the medium-VAV office, Econ+SR was a dominant ventilation strategy with highly 

significant energy savings, particularly in colder climates and with narrower indoor temperature 

setpoint ranges. But adding DCV could potentially save even more energy. On average, the 

additional source energy savings were modest, about 6 kWh/m2. Figure 8 was constructed to be 

directly comparable to Figure 5a, and it shows just how much less impactful DCV was in the 

medium-VAV office than in the small-CAV office. But it also shows that added savings from 

DCV were sometimes substantial, and in exactly the same types of situations small-CAV office 

savings were also greatest: buildings with high occupant density in the most extreme climates.  

 

 
Figure 8 Source energy use intensity savings from 
adding DCV to the Econ+SR strategy, vs. the sum of 
heating degree days (HDD) and cooling degree days 
(CDD). 

 

2.3.8.3 Medium-VAV office: When is SR inadvisable?  

 Supply air temperature reset generally saved significant energy in the medium-VAV office, 

but in about 4% of instances (per Table 9) a strategy without SR performed better, because SR 

increased fan energy more than it reduced cooling coil energy. Using logistic regression to 
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explore when Econ saved more energy than Econ+SR indicated that CDD was the most important 

influence. Figure 9a shows the adding SR to Econ only reduced savings a significant fraction of 

the time in the hottest locations, like Miami, Houston, Phoenix, and Las Vegas. 

 Even in those locations, though, large majorities of buildings saved additional energy with 

SR. According to the logistic regression, however, SR proved inadvisable for buildings that had 

high internal gains, relatively tight envelopes in terms of both conduction and infiltration, and low 

setpoints for both heating and cooling. We can combine these features with a single parameter, an 

annual average heating balance point temperature based only on internal (not solar) gains: 

\]KL,^$K_,MD_ = \%_`_,^$K_ − ELPD ℎ ABCDE F + de`fMDH  where h is the ceiling height, d and 

e` are the density and specific heat of air, and fMDH is the infiltration rate (Kreider et al., 2009). 

Figure 9b illustrates that so long as this balance temperature is above about 15 °C, SR will nearly 

always save source energy everywhere, except in a climate like Miami’s where SR still must be 

considered carefully. 

 

 
Figure 9 The HVAC source energy savings difference between Econ+SR and Econ in the medium-VAV 
office for (a) all instances and (b) instances where the heating balance point temperature (based only 
internal gains) exceeded 15 °C. 
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2.3.8.4 Medium-VAV office: When to use lockout vs. differential enthalpy economizing? 

 Finally, did differential enthalpy (DE) economizing (Econ) provide significant benefit over 

non-integrated economizing (EconLock) in which the economizer was locked out when it could 

not meet the full cooling load? Figure 10 summarizes the HVAC source energy savings of DE 

economizing in excess of those of lockout economizing, by climate zone category. On the right of 

the plots, text indicates how the median energy savings would change if all office moved from 

EconLock to Econ. For the small-CAV office, the relative benefits of DE economizing were 

small in the median, 1–2 kWh/m2, though they were somewhat greater in hot-dry and mixed-dry 

climates. For the medium-VAV office, added savings were a little larger, 4–7 kWh/m2, and much 

greater in marine climates, where in the median savings of DE economizing was nearly double 

the median savings of lockout economizing. Thus, integrated controls are of only modestly 

beneficial in hot-humid, mixed-humid, and cold climates, but save substantially more energy than 

lockout economizing in dry and especially marine climates. 

 

 
Figure 10 HVAC source energy savings from Econ minus savings from EconLock in the (a) small-CAV 
and (b) medium-VAV offices. The text on the right indicates the median savings with EconLock “to” the 
median savings with Econ. 
 

2.3.8.5 How much added energy does 2×VR require? 

 Increasing ventilation with 2×VR is not motivated by a desire for energy savings, but may 

have significant positive work performance and absenteeism benefits (Fisk et al., 2012). 

Knowledge of how much doubling mechanical ventilation affects energy use may be useful for 

informing decision-makers about ventilation choices (Hamilton et al., 2016). Table 13 shows 
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median percent changes in HVAC source energy consumption and median absolute added annual 

cost per occupant for doubling ventilation in all locations and Building America climate zones. 

Percent changes generally did not exceed about 10%, and were often much lower, and even 

negative, in the medium-VAV office. In real costs, the utility bill cost of doubling ventilation was 

typically quite low. For reference, according to the U.S. Bureau of Labor Statistics, the average 

cost to an employer of 15 minutes of an office worker’s time is about $12.  

 
Table 13 Median energy percent changes and absolute annual cost changes for doubling 
ventilation in all locations and Building America climate zone categories. 

 
 

HVAC source 
energy change 

(%)

Added cost 
per occupant 

($/year)

HVAC source 
energy change 

(%)

Added cost 
per occupant 

($/year)
Hot-Humid Miami 7% $10.74 15% $19.06

Houston 8% $11.67 9% $11.51
Zone median 8% $11.67 10% $12.29

Phoenix 5% $8.91 5% $7.78
Los Angeles 1% $0.63 -1% -$1.21
Las Vegas 6% $9.02 2% $3.24
Albuquerque 6% $8.59 0% -$0.04
Zone median 4% $7.45 1% $2.75

Mixed-Humid Atlanta 8% $11.72 5% $6.19
Baltimore 11% $16.57 5% $5.98
New York 11% $19.02 4% $6.46
Zone median 9% $14.56 5% $6.21

Marine San Francisco 5% $3.67 -7% -$5.49
Seattle 12% $13.45 -3% -$4.28
Zone median 10% $9.47 -4% -$5.04

Chicago 11% $21.40 5% $9.97
Boston 10% $19.60 4% $6.11
Denver 7% $12.98 1% $1.32
Minneapolis 12% $25.64 8% $12.42
Missoula 11% $21.73 3% $4.37
Duluth 12% $30.05 7% $13.97
Fairbanks 13% $36.14 15% $30.18
Zone median 10% $19.92 4% $7.11

9% $14.65 4% $6.49

Small-CAV office Medium-VAV office

National median

Building 
America (BA) 
climate zone

Location

Hot-Dry / 
Mixed-Dry

Cold / 
Very cold
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2.3.9 Implications for energy savings in high performance buildings 

 One interesting interpretation in both offices is that buildings likely to use the most energy 

were the ones that could save more energy from alternative strategies. The strategies with the 

most energy reductions in both office types saved more energy in colder climates, in buildings 

with leakier and less insulated envelopes, more occupants, longer operating hours, greater internal 

and solar gains, a tighter range of indoor air temperature acceptability, and less efficient heating 

and cooling equipment. One might wonder, then: are alternative ventilation strategies only 

effective in inefficient buildings? 

 In Figure 11, we have plotted probability density estimates for the Baseline strategy’s HVAC 

source energy use intensity, an alternative strategy’s savings, and its savings as a percent of the 

Baseline strategy usage. There are curves both for all instances and for a subset representing the 

top 10% most energy efficient buildings in each city. Clearly the savings available in the subset 

of high performance buildings were significantly less on an absolute basis. However, the Baseline 

strategy consumption was also significantly less in the subset, so that on a percent basis the 

savings achieved in high performance buildings were practically indistinguishable from those in 

the general building stock.  
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Figure 11 Probability density estimates of Baseline 
energy use intensity, alternative strategy absolute 
savings, and percent savings for (a) Econ+D950 in the 
small-CAV office and (b) Econ+SR+D950 in the 
medium-VAV office. Estimates are shown for all 
instances and for only the top 10% of high 
performance buildings. 

 

2.3.10 Detailed models and analysis as Supplementary Information 

 In addition to the linear regression models employed for the explanatory sensitivity analysis 

above, we also fit more detailed regression models, with interaction and quadratic terms, for 

changes in natural gas and electricity use separately. There are versions that include baseline 

consumption as a predictor, appropriate for retrofit evaluations when utility bills are available, 

and versions fit without baseline energy use, for use with new construction or other applications 

without existing energy histories. For both full versions, the fits were quite good, with every 

strategy and outcome having either R2 > 0.85 or root mean square error (RMSE) < 3 kWh/m2, and 

often significantly better, as indicated in Table 14. 
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Table 14 Fit statistics for detailed prediction models available as a spreadsheet implementation in the SI. 

 

 
 These detailed models were provided in spreadsheet form as Supplementary Information to 

the article version of this chapter. There, in a simple interface, in a matter of minutes, a user can 

enter specific building and climate information and see estimates of all the alternatives’ energy 

use impacts, with estimate uncertainties. 

 

2.4 Conclusions 

 Comprehensive simulations and sensitivity analyses were used to explore the energy saving 

potential of multiple alternative ventilation strategies relative to a Baseline strategy dictated by 

the ASHRAE minimum standard in a small office with a CAV HVAC system and in a medium 

office with a VAV system. Some of the most important results included: 

• In the small-CAV office, DCV was usually the single component with the most energy 

savings, and most of its savings came from natural gas used for heating. However, 

combining economizer and DCV approximately doubled the median HVAC source 

energy savings of DCV alone, in part because an economizer prevented DCV from 

inadvertently reducing free cooling. 

• In the medium-VAV office, economizer and SR were the dominant ventilation 

technologies recommended, and both heating (including reheat) and cooling savings were 

substantial. Adding DCV by itself usually saved little energy and was often 

counterproductive, but adding it to Econ+SR was often beneficial in colder climates. 

EconLock Econ Econ+SR D950 Econ+
D950

Econ+SR+
D950 2×VR Econ(+SR)+

D675

Small-CAV Natural gas 32 0.5 (0.39) 0.5 (0.39) - 4.1 (0.92) 4.2 (0.92) - 4.6 (0.95) 4.1 (0.87)
Small-CAV Natural gas, with BL 43 0.5 (0.47) 0.5 (0.47) - 3.2 (0.95) 3.2 (0.95) - 3.8 (0.96) 3.7 (0.89)
Small-CAV Electricity 66 0.6 (0.90) 0.8 (0.91) - 0.5 (0.89) 0.9 (0.93) - 0.6 (0.91) 1.0 (0.89)
Small-CAV Electricity, with BL 60 0.6 (0.93) 0.7 (0.93) - 0.5 (0.90) 0.8 (0.95) - 0.6 (0.92) 0.9 (0.91)
Medium-VAV Natural gas 64 0.6 (0.72) 0.6 (0.73) 2.9 (0.92) 1.1 (0.63) 1.3 (0.73) 3.1 (0.93) 2.6 (0.85) 3.2 (0.91)
Medium-VAV Natural gas, with BL 60 0.5 (0.74) 0.5 (0.75) 2.2 (0.95) 1.1 (0.64) 1.2 (0.76) 1.9 (0.97) 2.3 (0.88) 2.7 (0.94)
Medium-VAV Electricity 70 1.2 (0.91) 1.3 (0.92) 2.1 (0.90) 0.6 (0.90) 1.3 (0.92) 2.1 (0.90) 0.7 (0.94) 2.2 (0.90)
Medium-VAV Electricity, with BL 51 1.0 (0.94) 1.0 (0.95) 1.6 (0.95) 0.6 (0.89) 1.1 (0.94) 1.5 (0.95) 0.8 (0.93) 1.7 (0.95)

RMSE in kWh/m2 (R2)
Number 
of termsOutcomeOffice
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• If the 74% of U.S. office floorspace reasonably represented by our modeling replaced the 

Baseline strategy with the best alternative, 53 TWh of primary energy annually would be 

saved, of which 36 TWh—with an annual value of U.S. $1.25 billion—was estimated as 

still untapped given current technology adoption rates. 

• In the small-CAV office, the most decisive factors influencing the alternative strategy 

energy impacts were HDD and occupant density. Those two predictors plus infiltration, 

the day length, ELPD, and heating and cooling setpoints and coil efficiencies explained 

about two-thirds of impact variance. 

• In the medium-VAV office, zone temperature setpoints and HDD were the decisive 

influences. Along with the cooling coil COP and the infiltration rate, the heating setpoint, 

cooling setpoint, setpoint setback during unoccupied periods, and HDD explained about 

two thirds of impact variance. 

• Other than the infiltration’s influence on DCV savings in the small-CAV office, envelope 

parameters were not important predictors of alternative strategy impacts. However, the 

building conductive heat transfer coefficient did play a role in adjudicating some specific 

questions, like when both economizer and DCV were advisable in the small-CAV office, 

and when SR should be used in the medium-VAV office (in both cases, when the 

envelope was less insulated). 

• Detailed models are supplied in the Supplementary Information to the article version of 

this chapter in a user-friendly spreadsheet that allows fast estimation of energy impacts of 

alternative ventilation strategies for specific office buildings. 
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CHAPTER 3: EVALUATION OF WORK PERFORMANCE,  
ABSENTEEISM, POLLUTANT EXPOSURE, AND ENERGY USE  

TRADEOFFS OF MATURE ALTERNATIVE VENTILATION STRATEGIES 
3 CHAPTER 3: EVALUATION OF WORK PERFORMANCE, ABSENTEEISM, POLLUTANT EXPOSURE, AND ENERGY USE TRADEOFFS OF MATURE 

ALTERNATIVE VENTILATION STRATEGIES 

 

 

Chapter abstract: Mechanical ventilation can improve occupant productivity, use or save energy, 

and increase outdoor-to-indoor pollutant transport. This work explores those impacts for eight 

ventilation strategies, relative to a baseline constant mechanical ventilation rate (VR) of 9.4 

L/s/occ, in two representative offices. Strategies were unique combinations of airside 

economizing, demand-controlled ventilation, and supply air temperature reset, along with 

doubling the baseline VR. These were evaluated within a Monte Carlo analysis that varied 

climate and outdoor pollution, along with 19 building parameters. Energy modeling, empirical 

correlations, and indoor air quality (IAQ) modeling were used to quantify outcomes of: (i) energy 

use; (ii) profitable IAQ impacts, e.g. work performance; and (iii) negative IAQ health impacts 

due to indoor particle and ozone exposure. ‘Win-win’ strategies were defined as those that saved 

energy and increased work performance, and these always included an economizer. Relative to 

the baseline, the win-win strategies: increased annual geometric mean VRs by 5–10 L/s/occ; 

reduced mechanical system energy consumption by 12–27% (saving $1–1.75/m2/year); increased 

work performance by 0.5%; eliminated 5 hours of absenteeism per year; and increased indoor 

PM2.5 by 0.5 µg/m3 and ozone by 3 ppb. A sensitivity analysis identified infiltration and climate as 

the largest outcome drivers. Median annual benefits for small-to-medium-large offices in the U.S. 

(~75% of office floorspace) were $28 billion for implementing the win-win strategy with the 

greatest energy savings, and $55 billion for implementing the win-win strategy with the greatest 

work performance increase. Particle exposure tradeoffs were mitigated by use of efficient filters. 
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3.1 Chapter introduction 

 Mechanical ventilation is the intentional supply of outdoor air (OA) inside buildings by 

heating, ventilation, and air conditioning (HVAC) systems. Minimum mechanical ventilation 

rates are prescribed throughout the developed world by standard-setting organizations like 

ASHRAE, as a crucial part of providing “acceptable indoor air quality (IAQ)” (ASHRAE, 

2013b). Ventilation dilutes indoor-emitted pollutants, reducing potentially unhealthy or irritating 

exposures and advancing occupant olfactory comfort and perceived IAQ satisfaction (Persily, 

2015). Low ventilation rates (VR) have been correlated with increased illness absence and sick 

building syndrome (SBS) symptoms, negative odor perceptions, and reduced task performance 

(Bakó-Biró, Kochhar, Clements-Croome, Awbi, & Williams, 2007; Carrer et al., 2015; Fisk et al., 

2009; Haverinen-Shaughnessy et al., 2011; Mendell et al., 2013; Wargocki et al., 2004). 

Conversely, significant cognitive and task performance increases and sick leave reductions have 

been associated with VRs that well exceed ASHRAE Standard 62.1 recommendations (J. G. 

Allen et al., 2015; Milton et al., 2000; Satish et al., 2012; Seppänen et al., 2006). From an energy 

perspective, however, current ventilation practice is costly, accounting for ~1/4 of HVAC energy 

consumed by commercial buildings (Fisk et al., 2012; U.S. Energy Information Administration 

(EIA), 2006b). Increasing VRs could further increase energy use, but alternative ventilation 

strategies, particularly with dynamic control sequences, can also save energy (Brandemuehl & 

Braun, 1999; Fisk et al., 2012; Lawrence & Braun, 2007; Rackes & Waring, 2014). Finally, in 

addition to these multiple ramifications for decision-makers to consider, ventilation control also 

affects broader public health risks. That is because increasing ventilation increases occupant 

indoor exposure to outdoor air pollutants like fine particulate matter (PM2.5 = particles with 

aerodynamic diameter < 2.5 µm) and ozone (O3) (Bekö et al., 2008; Ben-David & Waring, 2016; 

Quang et al., 2013; Rackes & Waring, 2013; Stephens et al., 2012; Weschler, 2000), both of 

which have well-established, no-threshold associations with multiple adverse short- and long-

term health endpoints (Burnett, Smith-Doiron, Stieb, Cakmak, & Brook, 1999; Dominici, Peng, 
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& Bell, 2006; Dutton et al., 2013; Fann et al., 2012; Pope, Burnett RT, Thun MJ, & et al, 2002), 

including mortality (Dockery, Schwartz, & Spengler, 1992; Dutton et al., 2013; Hänninen et al., 

2005; Pope et al., 2009, 2002). 

 This study models the interplay among these three groups of ventilation impacts: (i) energy 

consumption costs; (ii) profitable IAQ impacts (like work performance and reduced absenteeism); 

and (iii) IAQ health impacts (from indoor exposure to outdoor pollutants). The scope is restricted 

to U.S. offices, which have well-characterized parameters and occupy the largest fraction of U.S. 

commercial floorspace, at 18% (U.S. EIA, 2015a). Previous studies have investigated two of the 

three impact categories. For example, the economic benefits of profitable IAQ outcomes 

correlated to ventilation were estimated to exceed the costs of increased energy consumption by 

roughly two orders of magnitude, under four hypothetical office sector scenarios (Fisk et al., 

2011, 2012). Other studies have compared energy consumption and IAQ health impacts of indoor 

exposures to outdoor pollutants when using natural ventilation (Dutton et al., 2013), increasing or 

decreasing minimum VRs (Chan et al., 2016), or reducing OA with additional recirculated air 

(Montgomery, Reynolds, Rogak, & Green, 2015). No study appears to have considered energy 

consumption, profitable IAQ impacts, and IAQ public health impacts all together. 

 This simulation study explores dynamic alternative ventilation strategies that may provide 

better outcomes over multiple impact categories. The eight studied strategies included unique 

combinations of three available technologies: (i) demand controlled ventilation (DCV), which 

dynamically modifies OA flow based on actual occupancy-driven requirements, rather than 

design ones; (ii) airside economizing, a control sequence that introduces more OA when it 

provides free cooling; and (iii) supply air temperature reset (SR), or increasing the supply air 

temperature setpoint at part-load conditions to save compressor and reheat energy. All of these 

have been shown capable of reducing energy consumption (Ben-David & Waring, 2016; 

Brandemuehl & Braun, 1999; Fisk et al., 2012; Fisk, Seppanen, Faulkner, & Huang, 2004; Fisk & 

De Almeida, 1998; Xu, Wang, Sun, & Xiao, 2009; Yao & Wang, 2010), but few if any have been 
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assessed in terms of profitable or health-based IAQ impacts, as done here. In addition, we 

modeled multiple building typologies and Monte Carlo methods to thoroughly explore a wider 

parameter space than previously studied—varying climates, outdoor PM2.5 and ozone profiles, 

envelope parameters, mechanical system efficiencies, internal loads, and schedules. 

 This chapter expands the analysis in Chapter 2 to include profitable IAQ impacts and IAQ 

health impacts. Many IAQ impacts are expected to have significantly more economic value than 

energy expenditures (Ben-David & Waring, 2016; Fisk et al., 2011), and good IAQ is of 

significant interest to a majority of tenants occupying office space (Hamilton et al., 2016). After 

summarizing impacts for all considered strategies, most attention is given to strategies that were 

‘win-win’ from a business perspective, meaning that they both saved energy and had positive 

profitable IAQ impacts—the two categories likely to be of greatest interest to most decision-

makers. After identifying the win-win strategies, a sensitivity analysis was used on the output 

dataset to craft targeted design guidance indicating what types of buildings are likely to benefit 

from each strategy. Then, we assessed the IAQ exposure impacts for PM2.5 and ozone for each 

strategy, and provided some parametric guidance on situations in which win-win strategies may 

have negative exposure tradeoffs, including possible ways to modify building operation to reduce 

those tradeoffs. Finally, aggregate economic outcomes of implementing win-win strategies for all 

three of the impact categories were estimated for the small-to-medium-large U.S. office sector. 

 

3.2 Methods 

 At the core of this work were geographically representative simulation datasets of energy 

consumption and IAQ outcomes in two types of U.S. office buildings, for multiple considered 

ventilation strategies (a Baseline strategy along with 6 or 8 alternative strategies). The flowchart 

in Figure 12 presents an overview of the construction of these datasets, with descending levels 

indicating (i) the definition of energy model templates, statistical distributions, and outdoor 
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pollution trajectories; (ii) energy simulations in EnergyPlus, followed by day-resolved IAQ 

calculations; (iii) computation of annual metrics and comparison to baseline values; and (iv) 

weighting the dataset to match the geographic/climate distribution of U.S. offices. The following 

sections provide details. 

 

 
Figure 12 Flowchart of the methodology used to 
produce the dataset of office building outcomes and 
impacts for energy consumption, profitable IAQ, and 
health IAQ. 
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3.2.1 Added modeling inputs and outputs 

 The office types, energy modeling, Monte Carlo approach, and ventilation strategies are the 

same as those described in Chapter 2. In addition, carbon dioxide (CO2) concentration was also 

modeled in EnergyPlus, based on the transient solution of a well-mixed mass balance applied to 

each building zone, assuming a constant outdoor concentration of 400 ppm and human CO2 

exhalation at a rate of 0.31 L/min per occupant (ASHRAE, 2013b). All non-energy outputs from 

EnergyPlus, such as airflow rates and CO2 concentrations, were recorded as 8 a.m. to 6 p.m. day-

resolved time-averages. This ‘prime occupancy’ period was used to avoid biasing the results, 

particularly occupancy-sensitive ones like the per-occupant ventilation rate, toward periods when 

few occupants were present. All subsequent calculations were day-average, with the profitable 

IAQ impacts (work performance, absenteeism, and SBS symptoms) computed for each zone and 

the IAQ pollutant exposure impacts computed for each HVAC system. Thus, day-average CO2 

concentration (ppm), number of occupants Pz (occ), mechanical ventilation airflow Qmv (m3/h), 

and infiltration airflow Qi (m3/h) were outputted for each zone, and recirculation airflow Qr (m3/h) 

was output for each HVAC system. 

 The effective ventilation rate (VR, in L/s/occ), or per-person outdoor airflow, was calculated 

for each day and zone according to 

VR =
Oij + OM /3.6

kl
 (6) 

where 3.6 is the conversion from m3/h to L/s. Note that the effective VR includes the 

contributions of intentional mechanical ventilation supplied by the HVAC system and leakage 

due to envelope infiltration. This VR would be the value estimated by a tracer-gas air-exchange 

measurement, and is appropriate given the equal dilution capability of mechanical and infiltration 

air exchange. When we need to refer to only the mechanical contribution to per-person 

ventilation, we call it the ‘mechanical VR’ or VRmv. 
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 Chapter 2 described the Monte Carlo sampling process, climate weighting (see Table 3), and 

18 sampled inputs, including 17 varied building parameters and one location code. For the 

analysis in this chapter, there were two additional codes for indexing outdoor PM2.5 and ozone 

concentration data, and two additional scalar building parameters. As before, predictors were 

defined for sensitivity analysis. These are summarized in Table 15. It differs from Table 5 in 

Chapter 2 only in the inclusion of four additional predictors. Two of these are average annual 

outdoor PM2.5 and ozone averages (PMout and O3out), while the other two are the additional 

scalar building parameters, the PM2.5 single-pass filter efficiency and the ozone deposition rate. 

Outdoor pollution modeling is described in more detail in Section 3.2.6, while the filter efficiency 

and deposition rate are described in Section 3.2.4. 

 

Table 15 Varied building parameters, short names, units, and sampling distributions. The final columns 
give descriptive statistics of all data, i.e., merging the final weighted datasets of the two office types.  

 
 

 

Parameter Units Short name Mean SD p5 p25 Median p75 p95
Heating degree days, base 18 °C. K·days HDD 2,308 1,221 530 1,156 2,566 3,267 4,147
Cooling degree days (base 18 °C) residual K·days CDDres 0 431 -1,024 -180 -14 203 797
Summer enthalpy residual kJ/kg sumEnthpyRes 0.0 7.6 -14.4 -6.0 2.1 5.3 10.1
PM2.5 annual average outdoor concentration µg/m3 PMout 8.6 2.7 4.4 7.0 8.4 10.0 12.8
O3 annual average outdoor concentration ppb O3out 36.6 5.8 29.0 33.0 35.3 39.2 47.4
Infiltration air exchange rate h-1 infAER 0.38 0.38 0.04 0.12 0.25 0.50 1.16
Conductive heat transfer coefficient per volume W/K/m3 KcondPerV 0.45 0.33 0.14 0.23 0.35 0.57 1.13
Wall thermal mass kJ/K·m2 wallCT 136 125 16 45 93 186 414
Window solar gain per volume W/m3 winSolarPerV 3.8 1.5 1.6 2.6 3.6 4.7 6.5
Day length hours per day dayLen 13.9 2.1 10.4 12.4 13.9 15.5 17.4
Combined LPD and EPD W/m2 ELPD 19.3 9.0 6.1 12.6 18.5 25.1 35.1
Occupant density occ per 100 m2 occDens 5.1 2.3 2.3 3.4 4.6 6.3 9.9
Zone heating setpoint °C heatStpt 21.5 1.4 19.1 20.6 21.5 22.4 23.8
Zone cooling setpoint °C coolStpt 24.3 1.4 22.1 23.3 24.3 25.3 26.8
Unoccupied period zone setpoint setback °C stptSetback 2.5 1.4 0.3 1.3 2.6 3.8 4.8
Heating efficiency - heatEff 0.80 0.11 0.63 0.71 0.80 0.89 0.97
Cooling coefficient of performance - coolCOP 3.02 0.74 1.79 2.45 3.02 3.60 4.24
Fan efficiency - fanEff 0.70 0.15 0.46 0.59 0.70 0.81 0.95
PM2.5 filter efficiency on mechanical ventilation air - PMeta_mv 0.25 0.20 0.04 0.11 0.19 0.33 0.69
O3 deposition rate h-1 O3beta 2.72 1.13 1.28 1.90 2.50 3.30 4.87
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3.2.2 Modeling profitable IAQ impacts 

 Profitable IAQ outcomes (outcome category 2) are herein defined as benefits that will 

increase the revenues or reduce the costs of the business occupying the office. Three effects were 

identified as sufficiently well-established to include: (i) work performance, or the labor 

productivity of employees; (ii) sick-leave absenteeism, or employees missing work due to illness; 

and (iii) sick building syndrome (SBS) symptom prevalence, or nonspecific adverse health or 

discomfort effects related to time spent indoors—including eye, nose or throat irritation, 

coughing, difficulty breathing, or other lower respiratory distress, and headache, drowsiness, and 

fatigue (Apte et al., 2000; Fisk et al., 2009; Joshi, 2008)—whose treatment costs may impact 

employer-based health care plans. Mechanisms for all three remain scientifically uncertain, and 

likely based on highly variable or difficult-to-measure quantities, so existing empirical formulas 

that directly link each outcome to the VR were employed. 

 Work performance has been positively associated with ventilation (or surrogates) in a number 

of studies (J. G. Allen et al., 2015; Carrer et al., 2015; Fisk et al., 2011, 2012; Maddalena et al., 

2014; Satish et al., 2012; Seppänen et al., 2006; Wargocki et al., 2004). The association is likely 

in part related to ventilation’s dilution of volatile organic compounds (J. G. Allen et al., 2015; 

Wargocki et al., 2004), possibly in part due to dilution of CO2 (J. G. Allen et al., 2015; Carrer et 

al., 2015; Satish et al., 2012) though there is contradictory evidence (Zhang, Wargocki, & Lian, 

2016), and possibly in part due to ventilation’s role in improving perceived IAQ (Kosonen & 

Tan, 2004) though performance benefits are also observed when perceived IAQ is unchanged 

(Maddalena et al., 2014). The effect may be related to cognitive performance (J. G. Allen et al., 

2015; Bakó-Biró et al., 2007; Haverinen-Shaughnessy et al., 2011; Satish et al., 2012), which 

could have large impacts in high-compensation sectors (MacNaughton et al., 2015). This study 

used a more conservative relation, based on a meta-analysis of studies primarily focused on task 

performance (Seppänen et al., 2006). That relation holds that relative work performance (RWP), 

compared to a reference ventilation rate, VRref, can be determined by 
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RWPnopqr = exp u VR′ − u VR#$H  (7) 

where 

u Y = −76.38Ywx − 0.78Y ∙ lnY + 3.87Y 1000 (8) 

and VR′ = min(max VR, 6.5 , 47) L/s/occ limits the domain of the function f to a valid range. 

We report baseline values for VRref of 10 L/s/occ (RWP10), a commonly used reference (Fisk et 

al., 2011), and also for 47 L/s/occ (RWP47) which indicates performance relative to the maximum 

achievable by altering the VR. The choice of reference does not matter, however, for the most 

important results, since it cancels when comparing an alternative strategy to the Baseline 

ventilation rate. 

 Sick-leave absenteeism has also been linked to lower ventilation (Milton et al., 2000). The 

presumed mechanism is that infectious diseases spread more easily in environments with lower 

ventilation (Carrer et al., 2015; Li et al., 2007; Myatt et al., 2004). This study used the 

exponential risk model formulated by Fisk et al. (Fisk et al., 2012), which was based on a study 

that determined that the relative risk of absence at a lower VR (~12 L/s/occ) compared to a higher 

VR (~24 L/s/occ) was 1.53 (Milton et al., 2000). Inserting the base absence rate of 2% at 12 

L/s/occ (Milton et al., 2000), as Fisk et al. (Fisk et al., 2012) did, the absence rate in hours absent 

per hour worked is 

�K]% = 0.02 ∙ 1.53 xwnoÄÄ/xÅ  (9) 

where VR′′ = min(max VR, 5 , 30) L/s/occ limits estimation of outcomes to a domain 

reasonably similar to the VRs in the original study. Fisk et al. (Fisk et al., 2012) did not propose 

formal limits for the relation, but multiple studies have failed to find sick leave or illness absence 

relations at higher VRs (Mendell et al., 2013, 2015; Myatt et al., 2002). In order to make 
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absenteeism rates more intuitive, later results additionally report ‘hours absent’ per standard 

2000-hour work year (i.e. rabs × 2000 h/year). 

 SBS symptoms have been linked with lower ventilation in a number of studies (Apte et al., 

2000; Carrer et al., 2015; Fisk et al., 2009; Sundell et al., 2011). The relation is assumed to be 

related to ventilation’s role in diluting indoor-generated air pollutants whose presence chemically 

or physically stresses some occupants, but exact mechanisms, pathways, sensory irritant species, 

and contributing factors are not well understood (Apte et al., 2000; Fisk et al., 2009; Wolkoff, 

Wilkins, Clausen, & Nielsen, 2006). This work employed the quantitative empirical relation 

between relative SBS symptom prevalence and the VR developed by Fisk et al. (2009). 

Combining that expression with the base fraction of SBS sufferers (16.8% at a VR of 18.3 

L/s/occ) used in a previous study (Fisk et al., 2012), the fraction of occupants that experience 

SBS symptoms is given by 

uÇÉÇ = 0.2137 ∙ exp 0.00089 ∙ VRÑÑ Å − 0.0542 ∙ VRÑÑ + 0.453  (10) 

where VR′′ remains as defined in Equation (9) above. (The original upper limit for the SBS 

function was 35 L/s/occ, but the curve is practically flat above 30 L/s/occ.) 

 All calculations were performed at a day-averaged resolution for each zone, and then 

subsequently aggregated to whole-building annual values for each instance, by means of 

occupant-weighted averages. For sector-wide benefit estimates, we calculated not only the central 

estimates of each relation but also the uncertainties in the impacts, which are presented in terms 

of 95% confidence intervals (CIs). 

 



www.manaraa.com

 
 71 

3.2.3 Deriving profitable IAQ uncertainties 

3.2.3.1 Work performance 

 The original fit in (Seppänen et al., 2006) was for the change in work performance per change 

in VR. Comparing two ventilation rates is therefore accomplished by integrating and evaluating at 

the VR of interest and the reference to which it is relative. Seppänen et al. also provided the 95% 

CI of the estimate in graphical form, and by fitting a curve to the difference between the 95% CI 

bounds and the central estimate and assuming a normal error distribution, one can establish an 

uncertainty distribution, uÖDB Y , by letting 

uÖDB Y = u Y + W ∙ ℎ Y  (11) 

where u Y  given by Equation (8), and z is a standard normal random variate. That is, the 

probabilistic function func can be decomposed into a deterministic function f, and the product of a 

random variable z with another deterministic function h. The function h was determined from the 

curve-fit, standardized (divided by 1.96), and integrated yielding 

ℎ = −11.617Ywx.ÅÜá + 0.607Y 1000 (12) 

 Given these definitions, one can replace the deterministic formula for RWPVRref (Equation 

(7)) with the uncertainty distribution, so that 

RWPnopqr,ÖDB = exp uÖDB VR′ − uÖDB VR#$H

= exp u VR′ + W ∙ ℎ VR′ − u VR#$H + W ∙ ℎ VR#$H

= exp u VR′ − u VR#$H ∙ exp W ∙ ℎ VR′ − W ∙ ℎ VR#$H

= RWPnopqr ∙ exp W ∙ ℎ VR′ − ℎ VR#$H  

(13) 
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3.2.3.2 Absenteeism 

 Assuming log(RR) is normally distributed, the central estimate and 95% CI given by (Milton 

et al., 2000) imply that log(RR) has a mean of ln(1.53) = 0.425 and standard deviation of ln(1.12) 

= 0.116. Therefore, with z again as a standard normal random variate, one can express the relative 

risk uncertainty distribution as 

RRÖDB = exp	 0.116W ∙ 1.53 (14) 

 which means that  

�K]%,ÖDB = 0.02 ∙ exp	 0.116W ∙ 1.53 xwnoÄÄ/xÅ = �K]% ∙ exp	 0.116W
xwnoÄÄ/xÅ

 (15) 

where rabs is given by the deterministic formula in Equation (9). 

3.2.3.3 Sick building syndrome 

 If one defines the function  

à Y = 0.00089YÅ − 0.0542Y (16) 

then one can rewrite the equation for fraction of occupants with SBS (Equation (10)) as 

uÇÉÇ = 0.2137 exp à VRÑÑ − à 10  (17) 

 As with work performance, à Y  arises in (Fisk et al., 2009) as the indefinite integral of a 

relation between VR and the change in fSBS. It is only a slight simplification to approximate the 

error bands in that relation as constant (i.e., independent of VR), corresponding to a standard 

deviation of about 0.007. Recognizing that a stronger relation corresponds to a negative deviation 

from the central estimate, one can express the uncertain fraction of SBS sufferers as 
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uÇÉÇ,ÖDB = 	0.2137 exp à VRÑÑ − W ∙ 0.007 ∙ VRÑÑ − à 10 − W ∙ 0.007 ∙ 10

= uÇÉÇ ∙ exp W ∙ 0.007 ∙ 10 − VRÑÑ  
(18) 

where fSBS is the deterministic version given by either Equation (10) or Equation (17). The 

formula in Equation (18) produces a 95% CI nearly identical to the one plotted in Figure 2 of 

(Fisk et al., 2009). 

 

3.2.4 Modeling indoor exposure to PM2.5 and ozone 

 IAQ public health impacts (outcome category 3) are defined herein as society-wide risks 

whose costs are unlikely to be perceptible by a building-related decision-maker. There are many 

potential health risks related to indoor air, but few are certain and well-characterized enough to 

evaluate in the context of ventilation decisions (Sundell et al., 2011). For example, volatile 

organic compounds (VOC) are too variable in strength and composition and too uncertain in 

health impact (Andersson et al., 1997; Logue et al., 2012; Rackes & Waring, 2013, 2016) 

(although some of their shorter-term effects may be at least partially captured by the empirical 

relations for profitable impacts). Two pollutants with enough information on sources, fate and 

transport mechanisms, and health impacts are PM2.5 and ozone originating outdoors, which have 

been studied extensively (Burnett et al., 2014, 1999; Fann et al., 2012; Laden, Schwartz, Speizer, 

& Dockery, 2006; Pope et al., 2009, 2002).  

 Indoor PM2.5 and ozone concentrations were modeled with day-averaged mass balances, over 

the prime 8 a.m. to 6 p.m. working period. Unlike the VR-correlated impacts, these calculations 

were performed for each HVAC system (the medium VAV building had three separate HVAC 

systems each serving five thermal zones, which meant three daily calculations, rather than 15 

calculations). All systems were assumed to have a single filter located in the mixed air stream, 

acting on both mechanical ventilation and recirculation air. Indoor sources of PM2.5 and ozone 
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were neglected because their emission rates are variable and poorly characterized (Girman, Apte, 

Traynor, Allen, & Hollowell, 1982; Lee, Lam, & Kin Fai, 2001; Weschler, 2000), and for PM2.5 

the composition may be quite different than the outdoor PM2.5 for which health impacts have been 

ascertained.  

 The daily time-averaged indoor PM2.5 concentration CPM,in (µg/m3), where the subscript “PM” 

is used for brevity and always refers to PM2.5, was calculated as 

âäã,MD =
1 − åäã,ij Oij + çäãOM âäã,CÖ_
Oij + OM + åäã,#O# + TäãF

=
1 − åäã,ij fij + çäãfM
fij + fM + åäã,#f# + Täã

âäã,CÖ_ (19) 

where Qmv, Qi, and Qr (m3/h) are the flow rates for mechanical ventilation, infiltration, and 

recirculation, respectively. In the second expression, λmv, λi, and λr (h−1) are the corresponding air 

exchange rates (AER). The remaining terms are the dimensionless filter efficiencies for 

mechanical ventilation air ηPM,mv and for recirculating air ηPM,r, the dimensionless envelope 

penetration factor pPM, the deposition rate βPM (h−1), the volume V (m3) served by the HVAC 

system, and the outdoor concentration CPM,out (µg/m3). Equation (19) neglects that some 

components of outdoor aerosol can transform upon entry indoors due to outdoor-to-indoor 

gradients of temperature and relative humidity (Johnson et al., 2017).  

 For the PM2.5 filter efficiency for mechanical ventilation air, ηPM,mv, this study developed a 

lognormal distribution (GM = 20%, GSD = 2.4) based on combining information about what 

filters are employed in commercial buildings with data on removal efficiencies for multiple 

individual filters (Azimi, Zhao, & Stephens, 2014); see the following section for details. The 

recirculating air filter efficiency, ηPM,r, was related to ηPM,mv by  

åäã,# = 0.5923åäã,ijÅ + 0.3604åäã,ij (20) 

which was an empirical fit (R2 = 0.98) based on integrating size-resolved removal efficiencies for 

the two air streams for multiple conditions including urban and rural size distributions (Jaenicke, 
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1993; Riley, McKone, Lai, & Nazaroff, 2002) and various typical ventilation, infiltration, and 

recirculation rates. Another empirical fit, previously developed by similar means (Rackes & 

Waring, 2013), gave the integrated PM2.5 deposition rate as 

Täã = 0.1710åäã,ijÅ − 0.1378åäã,ij + 0.0918 (21) 

The integrated PM2.5 envelope penetration factor, pPM, was constant at 0.73 (Zhao & Stephens, 

2016). 

 The daily time-averaged indoor ozone concentration, CO3,in (ppb), was similarly calculated as 

âéè,MD =
1 − åéè Oij + çéèOM âéè,CÖ_
Oij + OM + åéè,#O# + TéèF

=
1 − åéè fij + çéèfM

fij + fM + åéè,#f# + Téè
âéè,CÖ_ (22) 

where ηO3 is the dimensionless ozone filter removal efficiency, pO3 the dimensionless envelope 

penetration factor, βO3 (h−1) the deposition rate, and CO3,out (ppb) the outdoor concentration. 

Equation (22) is nearly identical to Equation (19), except that the HVAC filter removed ozone in 

the mechanical ventilation and recirculation air streams with equal efficiency, at a fixed value of 

5% (Bekö, Clausen, & Weschler, 2007). The penetration factor pO3 was fixed at 0.80 (Stephens et 

al., 2012). The deposition rate βO3 was sampled from a lognormal distribution (GM = 2.5 h−1, 

GSD = 1.5) used in previous analyses (Morrison, Shaughnessy, & Shu, 2011; Rackes & Waring, 

2013). Though this work calls βO3 a deposition rate, it can be conceived as a total decay parameter 

for ozone that also includes any occurring gas phase reactions. 

 

3.2.5 Filter efficiency distribution 

 For the integrated PM2.5 filter efficiency for outdoor air in the mechanical ventilation stream, 

ηPM,mv, a sector-wide filter efficiency distribution was fit to a set of removal efficiencies generated 

in a two-step process. We first sampled a Minimum Efficiency Reporting Value (MERV) based 

on MERV prevalence in the U.S. office sector, as determined principally by sales numbers 
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provided by a friendly industry representative. Then, given the MERV value, we sampled the 

single-pass efficiency for PM2.5 of outdoor origin from the distributions (over multiple outdoor 

particle distribution shapes) for ten filters developed by Azimi et al. (2014). After adjusting 

MERV use frequencies among offices for the MERV ratings available in Azimi et al. (2014), they 

were 5% for MERV 5, 15% for MERV 6, 10% for MERV 7, 35% for MERV 8, 25% for MERV 

10, 6% for MERV 12, 3% for MERV 14, and 1% for MERV 16.  

 The best-fit lognormal distribution for the set of sampled filter efficiencies had a GM of 20% 

and a GSD of 2.4. Despite the clustered nature of the sampled efficiencies, a unimodal 

distribution was used because of its simplicity, and because the real distribution of filter 

efficiencies across offices is expected to be less punctuated. In other words, combining MERV 

occurrence frequencies with Azimi et al. (2014) PM2.5 removal efficiencies is likely to provide a 

good estimate of the central tendency and spread of sector-wide filter efficiencies, but attempting 

to capture higher moments of that distribution would risk overfitting. Hundreds of filter products 

are in use in real offices, and the Azimi et al. (2014) results themselves show that even filters with 

the same MERV rating can vary in efficiency by a factor of 2–3. 

 

3.2.6 Outdoor PM2.5 and ozone data 

 Outdoor concentrations were taken directly from U.S. EPA data, from hour-resolved 

monitoring sites over the years of 2011 to 2014 (U.S. EPA, 2015b). In order to produce 8 a.m. to 

6 p.m. daily averages, hourly data was averaged over that time period each day. The result was 

1814 PM2.5 and 2460 ozone site/year records of yearlong, day-resolved, 8 a.m. to 6 p.m. outdoor 

concentration trajectories. 

 For each instance, two sampled inputs were used to assign records for annual PM2.5 and 

ozone trajectories. Only trajectories from EPA monitoring sites within a certain radius—generally 

300 km, but 500 km for a few areas with sparse EPA sites—of the location were allowed. The 
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goal was to sample broadly enough geographically to capture pollution levels in the climate zone 

represented by the regional location, not just in the city. On average, each location had associated 

with it records for 75 PM2.5 trajectories and 106 ozone trajectories. The annual averages were also 

used as explanatory variables for data analysis and are summarized for the total weighted dataset 

in Table 15. 

 

3.2.7 Annual averaging, best annual VR metric, and impacts 

 IAQ calculations were performed for each day of the year and (in the multizone medium-

VAV office) for each zone or HVAC system. For CO2, RWP, rabs, fSBS, PM2.5, and ozone results, 

occupant-weighted averages were used to first average zones and then average days of the year. 

(The offices had partial occupancy on Saturdays, and were unoccupied on Sundays and holidays.) 

For this study, time-varying trends within the office building or during the year were not 

analyzed. 

 It was not obvious that arithmetic averaging over zone and the year was the best way to 

define a representative annual VR metric, so we tested three possibilities: an occupant-weighted 

arithmetic mean (WAM), an occupant-weighted arithmetic mean where VRs were truncated to 50 

L/s/occ before averaging (WAMtr), and an occupant-weighted geometric mean (WGM). We 

assessed the three possibilities by plugging the annual VR metric into the RWP, rabs, CPM,in, and 

CO3,in relations (i.e., Equations 2, 4, 6, and 9), and comparing the simplified estimates to the 

respective true values (based on applying the relations for each zone and day and then averaging). 

Figure 13 shows comparisons for the most challenging strategies—i.e., those with the most 

variable VR were Econ+D975 in the small-CAV office and Econ+SR+D975 in the medium-VAV 

office. The important implications are that: the principal challenge is seasonal, not zonal, 

averaging (since errors were only slightly greater in the multizone medium-VAV office); (when 

the VR is dynamic, all annual VR metrics tend to overestimate the effect of ventilation on most 
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outcomes; and (the weighted geometric mean is the best of the three options for capturing annual 

performance. Therefore, the WGM was used to calculate the annual metric, VRyear, for this 

analysis. 

 

 
Figure 13 Median percent error from using the weighted 
annual mean (WAM), truncated WAM (WAMtr), and 
weighted geometric mean (WGM) as single annual VR 
metrics, compared to the true outcome values aggregated 
from daily calculations performed in each zone. 

 

 

 Thus far we have described the calculation of annual outcome values—HVAC natural gas 

and electricity consumption, VRyear, RWP, rabs, fSBS, and concentrations of CO2, CPM,in, and 

CO3,in—for all seven or nine simulated ventilation strategies for each instance. However, what we 

analyze primarily are the ‘impacts’ of alternative ventilation strategies, by which we mean the 

changes (using the symbol Δ) in energy and IAQ outcomes compared to the Baseline strategy. As 

an experimental design, evaluating the Baseline and alternatives on the same building and then 

analyzing the impacts provides greater statistical power since all building and climate parameters 

are held constant for each instance. 

 



www.manaraa.com

 
 79 

3.2.8 Monetizing impacts and calculating sector-wide benefits 

 The final section of this chapter computes aggregate costs and benefits across much of the 

U.S. office sector. For natural gas and electricity consumption valuation, mean prices were used 

from distributions developed from all U.S. states’ average commercial retail prices from 2005–

2014, as derived in Chapter 2, which were 3.75 and 10.86 and U.S. cents per kWh for natural gas 

and electricity, respectively. For profitable IAQ outcomes, changes in work performance and 

absenteeism were monetized by multiplying by the average annual compensation per office 

worker, or $91,500/person/year according to the U.S. Bureau of Labor Statistics (U.S. DOL, 

2016a, 2016b). This value was the employment-weighted mean of the total wage and benefit 

compensation for management, business and financial operations, office and administrative 

support, legal, architecture and engineering, computer and mathematics, building cleaning, and 

other occupational groups that work in offices. SBS symptom treatment costs were estimated at 

$213 per person with SBS per year (U.S. EPA, 2007). Calculation of public health risk 

distributions associated with PM2.5 and ozone exposures and monetization of those risks required 

applying concentration-response (C-R) functions along with relative risk (RR) uncertainty 

distributions and population data. These calculations represented a significant modeling effort, 

and one that was also necessary to develop the loss function in the following chapter. To avoid 

redundancy, this work is described only once in detail, in Section 4.2.4. 

 Monetary costs and benefits were calculated in what amounted to a second Monte Carlo 

simulation, with uncertainty in profitable IAQ outcomes and IAQ public health outcomes as 

sampled parameters. In addition, presence or absence of the alternative ventilation technology 

components was sampled to calculate the sector-wide untapped benefit, only counting the portion 

of office-sector floorspace not yet penetrated by a ventilation strategy’s technologies. Technology 

adoption rates and weighting by building size were described in the previous chapter, in Section 

2.3.3. 
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3.3 Results and discussion 

3.3.1 Outcomes under the baseline strategy 

 Table 16 summarizes the simulated outcomes resulting from the application of the Baseline 

constant ventilation strategy. The annual average mechanical-only VRmv,year was consistent and 

similar in both offices, exceeding the design 9.4 L/s/occ because the average occupant density 

from 8 a.m. to 6 p.m. was typically ~85% of design. The total VRyear, which includes the 

contribution of infiltration, was much higher, particularly in the small-CAV office. As a result, 

CO2 concentrations were lower than one would expect at the design mechanical VR (~950 ppm), 

but consistent with the low levels observed in many real U.S. offices, both with and without 

economizers. For example, in a study of 100 U.S. offices the mean CO2 concentration was 617 

ppm and rarely exceeded 900 ppm (Persily & Gorfain, 2008), and in a more recent investigation 

of 16 office spaces mean CO2 levels were generally in the 500–700 ppm range, and all means 

were in 432–873 ppm (Mendell et al., 2015). Energy outcomes were highly consistent with 

reported sector-wide consumption and costs, as detailed in Chapter 2. 

 Work performance was always improved relative to a reference of 10 L/s/occ, and often 

significantly so, thanks to infiltration (which also gave the small-CAV office greater RWP). 

However, significant work productivity gains were generally still available compared to the 

reference of 47 L/s/occ. For absenteeism and SBS, which cannot be driven to zero by ventilation, 

Table 16 lists excess values, which are amounts by which they exceeded their theoretical minima 

(21.4 hours absent per year, and 14.1% of occupants with SBS symptoms). The excess values 

reveal that additional gains are available in terms of reducing absent hours, but there is low 

excess SBS prevalence under the Baseline in the large majority of instances. Finally, the modeled 

indoor PM2.5 and ozone concentrations were similar to measured values in offices (Weschler, 

2000; Weschler, Shields, & Naik, 1989). 
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Table 16 Percentiles of selected outcomes under the Baseline constant ventilation strategy in the two 
offices. 

 
 

 

3.3.2 Alternative ventilation strategy impacts 

 Figure 14 shows the ranges of alternative ventilation strategy impacts, demonstrated as 

changes of the value of outcomes relative to the Baseline strategy. On average, all alternative 

strategies except D950 increased VRyear, with economizing strategies predictably producing VR 

increases of greater variability than 2×VR did. Differential enthalpy economizing (Econ) 

increased VRs much more than lockout economizing (EconLock) did, especially in the medium-

VAV office. When both an economizer and DCV were included, the economizer usually 

dominated, so that Econ+D950 experienced a net increase on the annual average VR > 75% of 

the time. 

 All strategies saved energy except for 2×VR in both offices and D950 in the medium-VAV 

office, as explained in detail Chapter 2. In the small-CAV office, DCV often drove the majority 

of energy savings. The three ventilation strategies with greatest energy savings were D950, 

Econ+D950, and Econ+D675, and the median best-strategy energy cost (and primary energy 

consumption) reduction was 12%, equivalent to annual cost savings of ~$1.00 per m2. In the 

5 25 50 75 95 5 25 50 75 95
Ventilation indicators

VRyear (L/s/occ) 11.5 14.1 18.9 27.4 50.6 10.2 12.3 15.7 21.2 34.6
VRmv,year  (L/s/occ) 11.0 11.3 11.3 12.2 12.5 11.0 11.3 11.3 12.2 12.5
CO2 (ppm) 498 569 640 712 802 566 646 715 779 860

Energy outcomes
HVAC natural gas (kWh/m2) 5 34 87 158 305 1 15 37 65 115
HVAC electricity (kWh/m2) 17 30 45 64 111 23 34 44 59 87
HVAC energy cost ($/m2) $3.34 $6.46 $8.92 $12.22 $18.44 $3.22 $5.02 $6.48 $8.52 $11.97

Profitable IAQ outcomes
RWP47 - 1 -2.3% -1.9% -1.3% -0.7% -0.1% -2.5% -2.2% -1.7% -1.2% -0.4%
RWP10 - 1 0.3% 0.7% 1.3% 1.9% 2.6% 0.1% 0.4% 0.9% 1.5% 2.2%
Hours absent (per 2000 hours) 21.5 24.8 31.5 37.1 40.6 22.7 29.6 35.0 38.9 41.5
Excess hours absent 0.1 3.4 10.1 15.7 19.2 1.3 8.2 13.6 17.5 20.1
SBS symptom prevalence 14.1% 14.5% 16.1% 18.1% 19.6% 14.2% 15.8% 17.7% 19.2% 20.7%
Excess SBS symptom prevalence 0.0% 0.4% 2.0% 4.0% 5.6% 0.2% 1.7% 3.6% 5.2% 6.6%

IAQ health outcomes
PM2.5 concentration (µg/m3) 0.8 2.3 3.9 5.5 8.0 1.5 3.4 4.8 6.2 8.3
O3 concentration (ppb) 4.0 6.3 8.7 11.6 15.7 2.5 4.1 5.8 8.0 11.4

Small-CAV baseline percentiles Medium-VAV baseline percentiles
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medium-VAV office, economizing and SR were the most important technologies. Econ+SR, 

Econ+SR+D950, and Econ+SR+D675 provided the most energy savings, and the median best-

strategy reduction was 27%, equivalent to ~$1.75 per m2. 

 Changes in profitable IAQ outcomes predictably followed changes in VRyear and indicators 

like CO2. (Indeed, a regression over all strategies in both models indicated that a 100 ppm 

decrease in CO2 concentration predicts a 0.76% increase in productivity with R2 = 0.91.) That is, 

in the majority of cases all ventilation strategies except D950 (and Econ+D950 in the small-CAV 

office) increased work performance and decreased absenteeism and SBS prevalence. Work 

performance generally changed less than 1%, and absent hours rarely decreased by more than 10 

h/year/occ. However, small changes in both metrics have large monetary values. SBS symptom 

prevalence reductions rarely exceeded a few percentage points. 
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Figure 14 Ranges of impacts, defined as changes from the baseline values, for six selected outcomes, for 
six alternative ventilation strategies in the small-CAV office and eight alternatives in the medium-VAV 
office. 
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 In terms of IAQ public health impacts, all strategies except D950 increased indoor PM2.5 and 

ozone concentrations on average. In at least 75% of instances, the changes were no more than 1.2 

µg/m2 PM2.5 and 5.2 ppb for ozone. Grouping all strategies that included economizers, median 

increases were 0.24–0.40 µg/m3 for PM2.5 and 2.0–3.0 ppb for ozone. While small in magnitude, 

these changes represented substantial fractional increases of ~8% for PM2.5 and ~40% for ozone 

above baseline exposures.  

 Economic values are discussed in much more detail in Chapter 4, but for quickly comparing 

magnitudes, consider the following approximate values for typical occupant density, salaries, and 

demographic characteristics. A $1 per m2 change in energy costs is worth $20 per person; a 0.5% 

change in annual work performance is worth $450 per person; five fewer hours absent per person 

is worth about $230 per person; a 2% reduction in SBS prevalence is worth $4 per person; a 

yearlong 0.5 µg/m3 increase in workplace PM2.5 concentration increases health risks valued at $40 

per person; a 3 ppb annual increase in workplace ozone adds risk valued at $10 per person. 

 

3.3.3 Win-win strategies for owners 

 Figure 14 and the preceding section make clear one of the central findings: that strategies 

with economizing—and only those with economizing, in the large majority of cases—can on 

average both save energy and provide profitable IAQ benefits (but also increase PM2.5 and ozone 

concentrations). To move beyond averages and examine specific strategies with economizers and 

their tradeoffs in particular instances, we defined ‘win-win’ strategies as those that both saved 

energy costs and increased work performance, the most valuable profitable IAQ impact. Such 

strategies can be attractive and mutually beneficial to multiple stakeholders like business owners, 

building owners (or utility rate payers), facilities managers, and tenants. This and the following 

two sections examine win-win strategies, and Sections 3.3.6 and 3.3.7 examine the win-win 

strategies in the context of pollution exposure consequences and mitigation. 
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 For any instance, depending on building and climate characteristics, multiple ventilation 

strategies were likely to be win-win. The ‘best’ among winners was selected for two categories, 

each with its own evaluation criterion. The best ‘energy-leaning’ strategy was the win-win 

strategy with the most energy cost savings that also had at least minimal improvements in the 

secondary benefit of work performance. The best ‘productivity-leaning’ strategy was the win-win 

strategy that most increased work performance and at least minimally saved energy as a 

secondary benefit. If the best strategy was less than 10% better than a win-win alternative with 

fewer technology components, however, the simpler one was selected, in order to avoid selecting 

more complicated strategies when they had little practical benefit. 

 The principal win-win alternative ventilation strategies were Econ, Econ+D950, and 

Econ+D675 in the small-CAV office, and Econ+SR, Econ+SR+D950, and Econ+SR+D675 in the 

medium-VAV office. These strategies all included economizing, and in the medium-VAV office, 

they always included SR. D950 was not a win-win strategy, though as noted in Chapter 2 the 

energy savings of Econ+D950 were sometimes nearly all achieved by D950 alone in small-CAV 

offices. Similarly, while energy savings alone never suggested using a D675 strategy in either 

office, strategies with that technology included with economizing and SR if applicable were often 

best from a holistic win-win perspective, because they saved somewhat less energy but improved 

IAQ significantly more in terms of work performance, as compared to their D950 counterparts.  

 Figure 15 includes area plots that show the fraction of instances for which each strategy was 

best; win-win strategies are those at or to the left of the vertical centerline, for either category 

(energy- or productivity-leaning). The vertical centerlines are strictly win-win according to the 

category definitions. For example, the areas at the centerlines of the productivity-leaning plots 

demonstrate the strategies with maximum productivity gains achievable for no additional use of 

energy ($0 cost). Moving along the x-axis of each plot in Figure 15 either strengthens (to the left) 

or relaxes (to the right) the win-win definition. The left-hand side of the centerline represents 

‘win-win-plus’ strategies that also provide additional secondary benefits (i.e., the best 
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productivity leaning strategy also saves energy, and vice versa). The grey areas labeled ‘None’ 

represent cases for which those secondary enhancements cannot be met by any strategy, 

illustrating the limits at which tradeoffs cannot be avoided. The right-hand side represents ‘win-

win minus’ strategies that allow some decrease in secondary benefits, with the negative 

requirement value indicating the tolerance. Thus, when some additional energy costs are 

tolerated, 2×VR becomes the strategy with the greatest labor productivity enhancements in some 

offices. Similarly, when some work performance decreases are tolerated, strategies with DCV and 

higher CO2 setpoints of 950 ppm often provide the greatest energy savings (but are only win-win 

if they also have economizers). The following section explores the factors that determined which 

strategy was best for a given requirement or tolerance. 

 

 
Figure 15 Percent of instances that were best under productivity-leaning and energy-leaning criteria, 
subject to energy savings and productivity increase requirements, respectively. The vertical centerlines, 
where there are no requirements, are strictly win-win. The left half of each plot, with additional positive 
requirements, is the win-win plus region. The right half is win-win minus, where a tradeoff up to a 
tolerance (negative requirement) is allowed.  
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3.3.4 Sensitivity analysis for VR, energy, and profitable IAQ impacts 

 A sensitivity analysis (SA) was conducted to better understand how building and climate 

parameters influenced the impacts of each strategy. We used linear regression to fit both 

explanatory and predictive models. Here, we present only the explanatory ones, which were 

restricted to linear terms, and limited results to the top eight predictors. Ranking was based on the 

sensitivity indices (SIs) of the different predictors over all strategies, but only frequent win-win 

strategies are listed in Table 17. The inputs were standardized, using the means (µ) and standard 

deviations (σ) listed in Table 15, so each coefficient is interpretable as the average change in 

impact in real units caused by a one standard deviation increase in the predictor. Furthermore, the 

constant is the change in the impact produced by the strategy when all predictors are at their mean 

values. Predictive or ‘full’ models included quadratic and interaction terms, and were included as 

a spreadsheet implementation as supplementary material to the journal article on which this 

chapter is based. A more detailed treatment of SA methods is included in Chapter 2. 

 According to Table 17, occupant density was the most important influence on VRyear, 

primarily because of its role as the normalizing factor for the OA flow rate. That is, the same Qmv 

provided by economizing will yield a higher VR if the occupant density is low, rather than if it is 

high. Internal gains (ELPD) and solar gains (winSolarPerV) were important in both offices, 

though especially in the medium-VAV office with its lower envelope-to-volume ratio. The 

lumped envelope heat conductivity parameter (KcondPerV) was important in the small-CAV 

office, where more transmissive envelopes led to greater VR increases from economizing. This 

somewhat surprising result was due to the fact that solar gains through an opaque roof can make 

economizing favorable. In both offices, more humid conditions (high sumEnthpyRes) and more 

extreme conditions (high CDDres) were associated with lower VR increases, but the fundamental 

hotness or coldness of the climate (HDD) was not particularly influential. 
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Table 17 Results of linear sensitivity analysis of impacts of model inputs on outcomes of ventilation rate 
(VRyear), HVAC energy cost, and work performance, for frequent win-win alternative ventilation strategies 
from a business owner’s perspective. Values are the change in the impact per one standard deviation 
change in the predictor (input). The constant is the change in the impact produced by the strategy when all 
predictors are at their mean values. For predictor definitions and units see Table 15. 

 
 

 

 For HVAC energy costs, much of the savings in the small-CAV office were driven by DCV, 

for which occupant density, HDD, and infiltration were decisive parameters. Higher values of all 

three were associated with greater energy savings (i.e., more negative changes in consumption) 

with Econ+D950. For the medium-VAV office, SR was quite sensitive to zone temperature 

Constant 13.6 5.3 10.5 Constant 8.9 5.1 9.9
21% occDens 5.1 2.3 -4.7 -3.7 -2.5 18% occDens 5.1 2.3 -5.5 -4.8 -4.6
10% KcondPerV 0.45 0.33 2.9 2.7 2.7 18% ELPD 19.3 9.0 4.3 3.9 4.0

6% ELPD 19.3 9.0 2.4 2.7 2.6 12% sumEnthpyRes 0.0 7.6 -3.2 -3.6 -2.8
5% sumEnthpyRes 0.0 7.6 -2.2 -2.4 -2.1 6% CDDres 0 431 -2.5 -2.9 -2.1
4% winSolarPerV 3.8 1.5 1.9 2.0 1.9 6% winSolarPerV 3.8 1.5 3.0 3.1 3.4
3% infAER 0.38 0.38 1.3 - -1.4 6% coolStpt 24.3 1.4 -2.4 -2.1 -2.6
3% coolStpt 24.3 1.4 -1.4 -1.6 -1.9 4% infAER 0.38 0.38 - -2.2 -4.9
1% CDDres 0 431 -1.2 -1.5 -1.0 1% HDD 2308 1221 - - -

6.6 (0.58) 6.7 (0.53) 6.6 (0.49) 4.4 (0.70) 4.5 (0.71) 4.2 (0.73)
4.4 (0.81) 4.6 (0.78) 4.6 (0.75) 3.0 (0.86) 3.1 (0.86) 2.9 (0.87)

Constant -0.35 -1.00 -0.63 Constant -1.75 -2.02 -1.77
26% occDens 5.1 2.3 - -0.27 - 18% heatStpt 21.5 1.4 -0.49 -0.48 -0.47
14% HDD 2308 1221 - -0.22 -0.10 15% stptSetback 2.5 1.4 0.43 0.43 0.42

8% infAER 0.38 0.38 - -0.10 -0.24 13% HDD 2308 1221 -0.34 -0.37 -0.36
5% dayLen 13.9 2.1 -0.04 -0.17 -0.12 10% coolCOP 3.02 0.74 0.32 0.34 0.30
4% heatStpt 21.5 1.4 -0.03 -0.14 -0.08 5% coolStpt 24.3 1.4 0.25 0.29 0.22
4% coolStpt 24.3 1.4 0.12 0.14 0.13 3% infAER 0.38 0.38 -0.27 -0.40 -0.58
4% ELPD 19.3 9.0 -0.14 -0.10 -0.12 2% CDDres 0 431 0.14 0.09 0.18
3% coolCOP 3.02 0.74 0.09 0.13 0.09 1% occDens 5.1 2.3 - - -

0.21 (0.49) 0.33 (0.70) 0.35 (0.56) 0.59 (0.68) 0.57 (0.71) 0.59 (0.70)
0.16 (0.71) 0.24 (0.84) 0.24 (0.79) 0.31 (0.91) 0.31 (0.91) 0.32 (0.91)

Constant 0.65 0.08 0.58 Constant 0.41 0.19 0.55
43% infAER 0.38 0.38 -0.22 -0.10 -0.29 35% infAER 0.38 0.38 -0.44 -0.46 -0.73

6% occDens 5.1 2.3 - -0.06 0.10 11% sumEnthpyRes 0.0 7.6 -0.15 -0.19 -0.10
3% KcondPerV 0.45 0.33 0.06 0.09 0.06 10% ELPD 19.3 9.0 0.15 0.15 0.12
3% sumEnthpyRes 0.0 7.6 -0.07 -0.11 -0.06 4% CDDres 0 431 -0.10 -0.15 -0.06
2% ELPD 19.3 9.0 0.05 0.11 0.07 3% winSolarPerV 3.76 1.50 0.08 0.14 0.10
2% winSolarPerV 3.8 1.5 0.05 0.09 0.05 2% coolStpt 24.3 1.4 -0.07 -0.06 -0.07
1% coolStpt 24.3 1.4 - -0.06 -0.05 2% HDD 2308 1221 - 0.06 -
1% CDDres 0 431 -0.03 -0.06 - 2% occDens 5.1 2.3 -0.04 -0.06 0.05

0.22 (0.64) 0.29 (0.46) 0.30 (0.63) 0.19 (0.76) 0.23 (0.74) 0.23 (0.79)
0.14 (0.85) 0.21 (0.71) 0.18 (0.88) 0.13 (0.89) 0.15 (0.89) 0.12 (0.94)

Medium-VAVSmall-CAV

Econ+SR+
D950

Econ+SR+
D675

Standardized effect size
SI Predictor µ

RMSE (R2)

Econ Econ+D950 Econ+D675 Econ+SR

Standardized effect size
SI Predictor

RMSE (R2)

RMSE (R2), full model

RMSE (R2)

RMSE (R2), full model

σµ

RMSE (R2), full model

RMSE (R2)

RMSE (R2), full model

RMSE (R2)

RMSE (R2), full model

RMSE (R2)

RMSE (R2), full model

σ

Δ VRyear (L/s/occ)Δ VRyear (L/s/occ)

Δ HVAC energy cost ($/m2) Δ HVAC energy cost ($/m2)

Δ work performance (%) Δ work performance (%)
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setpoints and the temperature setback, and all strategies with Econ and SR saved more energy in 

colder climates. While these predictors affected energy savings, they generally had little effect on 

profitable IAQ impacts.  

 For work performance, most of the influences were those that affected VRyear, i.e., the 

characteristics relevant to how mechanical ventilation is controlled. But the largest influence by 

far was one unrelated to the provision of mechanical ventilation: the infiltration rate. This fact 

was because infiltration played a fundamental role in determining the baseline values of 

outcomes, especially strongly nonlinear ones like RWP (and rabs), for which changes in VR have 

very different efficacies depending on the baseline operating point. Thus, for every one standard 

deviation increase in infiltration (0.38 h−1), the improvement in work performance expected from 

implementing an economizer decreased by about 0.25% in the small-CAV office, and nearly 

0.5% in the medium-VAV office. A leakier office has more air exchange to start, and therefore 

less to gain from economizing, at least in terms of work performance.      

 

3.3.5 Selecting owner win-win strategies  

 The insights from the sensitivity analysis, which showed infiltration and climate variables as 

the largest influences on energy and work performance outcomes, were used to construct Figure 

16, which is a simple graphic to help individual building owners decide among the three common 

win-win alternative ventilation strategies for each office type. For both offices, it shows the 

binned infiltration rates on the x-axis, with HDD (for the small-CAV office) or average summer 

enthalpy (for the medium-VAV office) values on the y-axis. Within those grids of binned input 

variables, median magnitudes of the outcomes are shown by the size of the circle for energy 

savings and the color of the circle for work performance.  
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Figure 16 Median energy (cost) savings and work performance (WP) changes for three win-win strategies, 
based on infiltration and outdoor conditions. 
 

 

Thus, with estimates of the infiltration rate and the value of the outdoor climatic variable for 

the building, a decision-maker can use Figure 16 as a tool to evaluate the median magnitude of 

impacts of the three strategies on energy savings and work performance. For example, for a very 

tight (infiltration < 0.1 h−1) small-CAV office in any climate, approximate median energy cost 

savings and work performance increases would be, respectively: $0.25/m2 and 1% with Econ; 

$0.85/m2 and 0.4% with Econ+D950; and $0.20/m2 and 1.3% with Econ+D675. All three 

strategies are win-win (something that would not be true in a leakier building in a climate with 

meaningful heating needs), so decision-makers would have to weigh the balance of impacts and 

consider implementation cost differences to make a choice.  

Figure 16 also illustrates some broad trends at a glance. In the small-CAV office type, 

Econ+D950 can save the most energy, but in all but the tightest offices it usually comes with 

work performance decreases. However, both Econ and Econ+D675 save less energy but usually 

also enhance (or at least do not reduce) work performance. The medium-VAV office has much 
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greater potential energy savings and performance enhancements than the small office, and they 

are possible at the same time, especially in climates without excessively high summer enthalpy. 

Furthermore, most benefits come from Econ+SR, the simplest win-win strategy. Adding DCV 

with a higher setpoint to Econ+SR rarely saves substantial additional energy (and sometimes 

hurts work performance), but adding DCV with a low CO2 setpoint can further enhance the work 

performance benefits of Econ+SR, particularly at low infiltration rates, without substantially 

reducing energy savings. Of course, Figure 16 only shows medians given two parameters. Many 

other parameters are influential. Occupant density, in particular, is critical in determining whether 

adding DCV to Econ or Econ+SR is warranted. The role of multiple parameters can be assessed 

for a given circumstance with the detailed predictive strategy impact models in the spreadsheet 

that accompanied with the published article version of this chapter. 

 

3.3.6 Quantifying outdoor pollutant exposure tradeoffs 

 Positive profitable IAQ impacts and negative IAQ public health impacts from exposure to 

outdoor pollutants both increase with VR and are in direct conflict. To understand the tradeoffs, 

Figure 17 plots PM2.5 and ozone impacts versus work performance for Econ in the small-CAV 

office and for Econ+SR in the medium-VAV office. With these ventilation strategies, each 1% 

increase in work performance corresponded to an average increase in indoor concentrations of 

0.5–1 µg/m3 for PM2.5 and 5–6 ppb for ozone, with the steeper tradeoffs in the small-CAV office. 
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Figure 17 Change in PM2.5 and ozone concentrations versus change in work performance for Econ in the 
small-CAV office and for Econ+SR in the medium-VAV office, with zero-intercept best-fit lines in red. 
 
 

 Table 18 includes similar tradeoffs for most other strategies in both offices, in terms of both 

medians and interquartile ranges of impact ratios. The positive values confirm that no strategy 

could avoid increasing outdoor pollutant exposure indoors as a tradeoff of increasing work 

performance. Most had similar tradeoffs. Somewhat lower tradeoff slopes were found for PM2.5 

under economizing strategies in the medium-VAV office, and for ozone under non-economizing 

strategies (D950 and 2×VR) in both offices. These results are due principally to the interplay 

between slopes of the governing impact relations at different VR operating points, since there are 

diminishing returns to work performance benefits as the VR increases. 

 
 
Table 18 Indoor PM2.5 and ozone concentration changes divided by work performance (WP) change, with 
ΔPM2.5 in µg/m3, ΔO3 in ppb, and ΔWP in %. In the medium office, strategies with SR were assessed 
where applicable. The median values of these impact-tradeoffs are shown with their respective interquartile 
ranges in parentheses. 

 

 

3.3.7 Predicting and mitigating outdoor pollutant exposure impacts 

 Sensitivity analysis for PM2.5 and ozone concentration changes can help identify and perhaps 

protect against collateral exposure from win-win strategies. Eight-term regression model results 

in Table 19 show that, in both office types, buildings with high outdoor PM2.5 concentrations, low 
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infiltration, low efficiency filters, and low occupant density experienced the largest increases in 

indoor PM2.5 concentration. In addition, more humid climates (high sumEnthpyRes) and more 

extreme ones (high CDDres) were associated with lower PM2.5 exposure increases, especially in 

the medium-VAV office, both because economizer was used less frequently and because they had 

greater total filtration losses because of higher recirculation rates (which are a function of 

thermal-load-driven supply air flows). For ozone, the influences were similar for predictors 

influencing VRyear, with the outdoor ozone concentration and infiltration rate also highly 

influential. Compared to PM2.5, climate was a weaker influence on ozone, which changed little 

with changes in recirculation because there was no intentional gas-phase filtration (Bekö et al., 

2007). 

 
 
Table 19 Results of linear sensitivity analysis of IAQ health impacts for strategies that were frequently win-
win from a business owner’s perspective. Values are the change in the response per one standard deviation 
change in the predictor. The constant is the change in the outcome produced by the strategy when all 
predictors are at their mean values. For predictor definitions, units, and means and standard deviations, see 
Table 15. 

 
 

Constant 0.72 0.14 0.59 Constant 0.17 -0.11 0.27
20% PMout 8.6 2.7 0.26 0.13 0.22 14% sumEnthpyRes 0.0 7.6 -0.20 -0.25 -0.15
10% PMeta_mv 0.25 0.20 -0.10 0.06 -0.05 14% PMout 8.6 2.7 0.15 0.09 0.19

8% infAER 0.38 0.38 -0.10 - -0.20 12% infAER 0.38 0.38 -0.21 -0.27 -0.51
5% occDens 5.1 2.3 -0.12 -0.15 - 6% occDens 5.1 2.3 -0.17 -0.16 -0.10
4% KcondPerV 0.45 0.33 0.11 0.13 0.11 6% CDDres 0 431 -0.13 -0.18 -0.10
4% sumEnthpyRes 0.0 7.6 -0.12 -0.18 -0.11 5% PMeta_mv 0.25 0.20 -0.10 - -0.11
2% ELPD 19.3 9.0 0.09 0.14 0.10 4% ELPD 19.3 9.0 0.11 0.11 0.07
2% HDD 2308 1221 -0.08 -0.12 -0.08 1% HDD 2308 1221 - 0.05 -

0.32 (0.59) 0.42 (0.42) 0.39 (0.51) 0.25 (0.66) 0.31 (0.60) 0.27 (0.68)
0.20 (0.83) 0.27 (0.75) 0.24 (0.81) 0.16 (0.86) 0.19 (0.84) 0.16 (0.89)

Constant 4.10 2.01 3.62 Constant 2.87 1.99 3.34
18% O3out 36.6 5.8 1.10 0.87 0.98 15% ELPD 19.3 9.0 0.86 0.88 0.70
11% occDens 5.1 2.3 -0.37 -0.78 - 13% infAER 0.38 0.38 -0.98 -1.33 -1.97
10% KcondPerV 0.45 0.33 0.66 0.77 0.66 12% sumEnthpyRes 0.0 7.6 -0.68 -0.79 -0.58
10% infAER 0.38 0.38 -0.40 -0.39 -0.93 9% O3out 36.6 5.8 0.62 0.50 0.70

6% ELPD 19.3 9.0 0.52 0.73 0.60 8% CDDres 0 431 -0.65 -0.78 -0.51
5% O3beta 2.72 1.13 -0.42 - -0.34 8% O3beta 2.72 1.13 -0.48 -0.31 -0.63
3% coolStpt 24.3 1.4 -0.31 -0.52 -0.48 7% winSolarPerV 3.8 1.5 0.72 0.79 0.83
3% winSolarPerV 3.8 1.5 0.36 0.48 0.39 5% occDens 5.1 2.3 -0.41 -0.58 -

1.23 (0.67) 1.55 (0.61) 1.43 (0.66) 0.95 (0.79) 1.05 (0.77) 0.99 (0.81)
0.76 (0.87) 0.96 (0.85) 0.85 (0.88) 0.55 (0.93) 0.61 (0.92) 0.53 (0.95)

Δ PM2.5 concentration (µg/m3)

Δ O3 concentration (ppb)

RMSE (R2)

RMSE (R2), full model

RMSE (R2)

RMSE (R2), full model

Small-CAV Medium-VAV

Econ Econ+D950 Econ+D675 Econ+SR Econ+SR+
D950

Econ+SR+
D675

Standardized effect size

RMSE (R2)

RMSE (R2), full model

RMSE (R2)

RMSE (R2), full model

Δ PM2.5 concentration (µg/m3)

Δ O3 concentration (ppb)

SI Predictor µ σ
Standardized effect size

SI Predictor µ σ



www.manaraa.com

 
 94 

 
 Both the PM2.5 filter efficiency and the ozone deposition rate were less influential than 

expected. For example, each standard deviation increase in filter efficiency (0.20) only reduced 

the PM2.5 concentration increases expected from adding an economizer by 0.1 µg/m3. Figure 18 

illustrates why this is true for PM2.5, using the indoor/ outdoor (I/O) concentration ratio. While 

filter efficiency played a large role in determining the I/O ratio and was highly correlated with it, 

as shown in Figure 18a for the Baseline strategy, filter efficiency was weakly related to the 

change in I/O between the Baseline and Econ strategy, which was typically relatively modest in 

any case, as shown in Figure 18b. 

 

 
Figure 18 (a) Indoor/outdoor (I/O) ratio of PM2.5 under the Baseline (BL), versus PM2.5 filter efficiency; (b) 
change in PM2.5 I/O ratio from implementing Econ, versus PM2.5 filter efficiency; and (c) indoor PM2.5 
concentrations using BL, Econ, and D975 for two filter efficiency bins in the small-CAV office; ρ is a 
correlation coefficient measuring the linear dependence between PM2.5 I/O ratio and filter efficiency.  
 

 

 Figure 18c shows box plots of the indoor PM2.5 concentration for the Baseline, Econ, and 

D975 strategies, binned into instances with average-or-lesser (ηPM,mv < 0.2) or superior (ηPM,mv > 

0.7) filter efficiency. (Figure 18c used data from the small-CAV office, but the medium-VAV 

office had similar trends.) These binned results illustrate that the small regression coefficients for 

filter efficiency in Table 19 indicate not that filtration has little ability to alleviate increased PM2.5 

with win-win strategies, but exactly the opposite. That is, filter efficiency is a much stronger 

determinant of indoor PM2.5 than the ventilation strategy. Indeed, indoor PM2.5 concentrations 

were similar across strategies (especially with superior filters), but very different across filter 
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efficiency bins, indicating that filter enhancement is a more effective method to influence PM2.5 

concentration than any alteration in ventilation strategy. A similar result held for the ozone 

deposition rate, implying that for buildings with high ozone outdoors, air-cleaning with filtration 

or passive removal of ozone could be an effective mitigation approach, no matter the ventilation 

strategy.  

 

3.3.8 Sector-wide benefits of win-win strategies 

 The aggregate benefits of implementing win-win strategies in the U.S. small-to-medium-large 

office sector (~1.1 billion m2 or ~75% of total U.S. office floorspace (U.S. EIA, 2015b)) are 

presented in Table 8. These are the annual benefits associated with selecting (independently for 

each instance) the best energy-leaning or productivity-leaning win-win ventilation strategy, which 

in the small-CAV office were nearly always Econ, Econ+D950, or Econ+D675, and in the 

medium-VAV office were Econ+SR, Econ+SR+D950, or Econ+SR+D675. Estimates are given 

for the theoretical total benefit based on simply scaling up modeled impacts to the sector 

floorspace, and for the untapped market potential, which accounts for estimated current adoption 

rates of economizers, DCV, and SR in offices (Hamilton et al., 2016). An important caveat is that, 

to maintain the consistent yardstick used throughout this chapter, the benefits in Table 20 are 

relative to the Baseline determined by ASHRAE Standard 62-2001. 
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Table 20 Aggregate annual benefits in the small-to-medium-large office sector for both energy-leaning and 
productivity-leaning win-win ventilation strategies. The theoretical total estimate assumes all offices 
currently use the baseline strategy, while the untapped estimate attempts to account for current adoption 
levels of component technologies. For IAQ impacts subject to uncertainty, medians are given, with 95% 
confidence intervals in parentheses. 

 
 
 
 
 Importantly, the sector-wide benefit of implementing win-win strategies was always positive 

for the entire 95% CI, for both selection categories, for both the theoretical total and untapped 

potential. Profitable IAQ impacts dominated the benefits, with work performance accounting for 

about two-thirds of the benefits and absenteeism the remainder, while SBS symptom treatment 

costs were two orders of magnitude lower. Energy benefits were generally 5% of profitable IAQ 

impacts for selected energy-leaning strategies, and only 2% for productivity-leaning strategies. 

For this reason, the productivity-leaning criterion had nearly double the benefit of the energy-

leaning one, but retained 65–70% of the energy savings. Energy benefits under the energy-

leaning selection rule were in line with those calculated in Chapter 2 on pure energy economics 

terms, except very slightly lower because of the exclusion here of energy-saving strategies that 

decreased work performance, like D950 in the small-CAV office. 

 The IAQ public health costs of added indoor exposure to outdoor-originating PM2.5 and 

ozone were mostly due to mortality, which made up 87% of the median value for PM2.5 and 83% 

(19% respiratory, 64% short-term) for ozone. Coronary revascularization contributed 7% and 

chronic bronchitis 5% to PM2.5 costs, and chronic asthma contributed 15% to ozone costs, but all 

other endpoints accounted for less than 2% of each pollutant’s total. Like energy costs, health 
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impact costs were also overwhelmed by the work performance and absenteeism benefits, with the 

magnitude of median IAQ health costs only ~7% of the median profitable IAQ impacts benefits. 

Nonetheless, any additional deaths should clearly be prevented by use of more efficient particle 

(and eventually ozone) filtration and possibly curtailment of higher ventilation when outdoor 

concentrations are high.  

 Estimates of untapped potential in the office sector market were nearly as high as the 

theoretical total estimates that did not account for current technology adoption rates. This 

similarity in estimates appeared to be because buildings that already had only DCV (according to 

the current market adoption fractions) experienced significantly greater benefits from switching 

to a win-win strategy, a fact that mostly balanced the much lower realized benefits for buildings 

that already had economizers installed. In short, selecting win-win ventilation strategies can tap 

into a largely unexplored portion of the office sector market that bears significant potential 

financial gain for building owners and businesses. 

 

3.4 Conclusions 

 This work examined the impacts of alternative ventilation strategies that combined 

economizing, DCV, and SR on three outcome categories: (i) energy savings, (ii) profitable IAQ 

impacts (work performance, absenteeism, and SBS symptoms), and (iii) negative IAQ public 

health impacts (due to indoor exposure to outdoor PM2.5 and ozone). A combination of energy 

modeling, empirical outcome correlations, and mass-balance modeling was employed. Outcome 

datasets were constructed by varying 19 building parameters and outdoor climate and pollution 

data in a large Monte Carlo analysis, weighted to be representative of ~75% of the U.S. office 

sector floorspace in small-to-medium-large buildings. Impacts of alternative ventilation strategies 

in a small-CAV and medium-VAV office were evaluated with respect to a baseline fixed VR 
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based on U.S. minimum standards. Baseline results for all outcomes were in good agreement with 

available energy use data and air quality measurements for offices. 

 There was a large amount of variability in the outcomes, among both strategies and building 

instances. Overall trends though, were clear, as the following approximate median impacts 

illustrate. Most strategies except doubling the VR saved energy, with annual HVAC energy costs 

and primary energy consumption reductions of 12–27%, equivalent to $1–1.75 per m2 in energy 

costs, for the most successful strategies. Strategies with economizer increased VRs by 5–10 

L/s/occ, which resulted in increased work performance of 0.5% and five fewer hours absent per 

year, accompanied by indoor concentration increases of about 0.5 µg/m3 for PM2.5 and 3 ppb for 

ozone. 

  ‘Win-win’ strategies were defined as ones that saved energy and achieved profitable IAQ 

benefits, as indicated by the change in the most valuable one, work performance. Most 

importantly, all win-win strategies included an economizer, and in the multizone medium-VAV 

office they also included SR. An economizer was particularly beneficial because it increased the 

amount of ventilation air introduced indoors, while also saving energy. Two variants added DCV 

with a CO2 setpoint of 950 ppm or 675 ppm, which performed better than an economizer alone 

under certain conditions. Sensitivity analysis showed that infiltration, climate indicators, and 

occupant density were strong determinants on both energy and profitable IAQ impacts. This 

insight was used to develop a simple graphical tool that allows users to compare median energy 

and work performance impacts of the three win-win strategies for bins of specific infiltration and 

HDD or outdoor air enthalpy values.  

 Increases in VR also increased indoor exposure to outdoor pollutants, with a 1% increase in 

work performance associated with 0.8 µg/m3 and 5 ppb increases in PM2.5 and ozone 

concentrations, respectively. Sensitivity analysis revealed that outdoor concentrations were the 

largest influence on the changes in indoor concentrations. Further analysis indicated that, for 

PM2.5, filter efficiency is a far more important determinant of the indoor concentration than 
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ventilation strategy, and mitigating health effects due to PM2.5 indoors can be done effectively by 

improving filtration, even at high ventilation rates. 

 An office sector-wide analysis of win-win strategies indicated theoretical total benefits of $28 

billion U.S. (95% CI: $6–52 billion) when the win-win strategy with the greatest energy savings 

was selected, and $55 billion U.S. (95% CI: $7–103 billion) when the win-win strategy with the 

greatest work performance increase was selected. Profitable IAQ impacts dominated the benefits 

of alternative strategies, with work performance increases accounting for ~2/3 of the profitable 

IAQ benefits, reduced absenteeism ~1/3, and SBS symptom reduction comparatively negligible. 

Energy savings were substantial but were only 2–5% as valuable as profitable IAQ impacts. 

Likewise, while IAQ health risk economic valuations represented substantial aggregate public 

health costs, largely due to added mortality for both PM2.5 and ozone, their magnitude was about 

an order lower than the profitable benefits (again filtration can mitigate many mortality impacts). 

Importantly, the total benefit of implementing win-win strategies was always positive over the 

95% CI interval. Estimates of benefit that took into account portions of the strategies already 

adopted by offices indicated that most benefits remain untapped. 
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CHAPTER 4: OUTCOME-BASED VENTILATION: A FRAMEWORK FOR 
INTEGRATED ASSESSMENT OF INDOOR AIR QUALITY AND ENERGY 

IMPACTS OF COMMERCIAL BUILDING VENTILATION 
4 OUTCOME-BASED VENTILATION: A FRAMEWORK FOR INTEGRATED ASSESSMENT OF INDOOR AIR QUALITY AND ENERGY IMPACTS OF 

COMMERCIAL BUILDING VENTILATION 

 

Chapter abstract: This chapter presents a framework called outcome-based ventilation (OBV) for 

evaluating ventilation rates (VR) in commercial buildings and making informed decisions based 

on the resultant indoor air quality (IAQ) and energy consumption outcomes. A loss function 

combines outcomes, using scientific knowledge to establish the form of ventilation-outcome 

relations, and user-selected parameters to adjusted for preferences; therefore, minimizing loss 

optimizes ventilation for a given decision-maker. The approach was developed for U.S. offices, 

and included six outcomes: occupant work performance and sick leave absenteeism (profitable 

IAQ outcomes), health risks from exposure to fine particles and ozone from outdoors (IAQ public 

health outcomes), and electricity and natural gas consumption (energy outcomes). Literature 

research was used to develop low, medium (central estimate), and high reference values for user 

parameters. Applying medium parameters to a dataset representing the U.S. office stock, median 

loss changes in $/occ/h from an intervention that increased VRs by ~10 L/s/occ were: −0.36 

(work performance), −0.21 (excess absence), 0.02 (PM2.5 exposure), 0.01 (ozone exposure), 0.00 

(electricity use), and 0.00 (natural gas use). Work performance and absenteeism nearly always 

remained dominant unless a user selected low parameters for profitable IAQ outcomes and high 

values for public health and energy outcomes. With medium parameters, profitable IAQ outcomes 

were determinative, leading to outcome-based VRs that were 45–50 L/s/occ—approximately five 

times current minimum office VRs—regardless of time of year of building characteristics. The 

most ventilation-adverse user preferences, with low parameters for profitable IAQ impacts and 

high values for public health and energy impacts, still produced VRs that were very often as high 

as 30 L/s/occ and only rarely lower than 15 L/s/occ. With the latter user parameters, optimal VRs 
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varied over the year and depended on weather, pollution, and building specifics in ways that no 

existing non-outcome-based ventilation strategy captures. 

 

4.1 Chapter introduction 

 How should one make deliberate decisions about setting building ventilation rates, which can 

have many implications? Ventilation’s principal purpose is diluting indoor-emitted pollutants, 

reducing odors as well as potentially unhealthy or irritating chemical exposures (ASHRAE, 

2013b; Persily, 2015; Sundell et al., 2011). Low ventilation rates (VR) are associated with 

increased illness, greater prevalence of sick building syndrome (SBS) symptoms, and reduced 

task performance (Bakó-Biró et al., 2007; Carrer et al., 2015; Fisk et al., 2009; Haverinen-

Shaughnessy et al., 2011; Mendell et al., 2013; Wargocki et al., 2004). VRs that significantly 

exceed current minimum standards have also been associated with significant cognitive and task 

performance increases and sick leave reductions (J. G. Allen et al., 2015; Milton et al., 2000; 

Satish et al., 2012; Seppänen et al., 2006). Ventilation control also affects broader public health 

risks, for example by introducing outdoor air pollutants like fine particulate matter (PM2.5 = 

particles with aerodynamic diameter < 2.5 µm) and ozone (O3) (Bekö et al., 2008; Ben-David & 

Waring, 2016; Quang et al., 2013; Rackes & Waring, 2013; Stephens et al., 2012; Weschler, 

2000) both of which have well-established, no-threshold associations with multiple adverse short- 

and long-term health endpoints (Burnett et al., 1999; Dominici et al., 2006; Dutton et al., 2013; 

Fann et al., 2012; Pope et al., 2002), including mortality (Dockery et al., 1992; Dutton et al., 

2013; Hänninen et al., 2005; Pope et al., 2009, 2002). In addition to these many indoor air quality 

(IAQ) implications, current ventilation practice accounts for ~1/4 of HVAC energy consumed by 

commercial buildings (Fisk et al., 2012; U.S. Energy Information Administration (EIA), 2006b). 

Though increasing VRs generally increases energy use, in some settings it can also save energy 

by economizing under certain weather conditions, as shown in the previous two chapters. 
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 The most influential decisions about ventilation rely on minimum VRs set by regulatory 

standards. Persily (2015) recounted the historical twists and turns in the development of 

ASHRAE Standard 62.1, the most well-known ventilation standard for commercial buildings 

(ASHRAE, 2013b). The minimum VR for office spaces specified by Standard 62.1 (and its 

precursor Standard 62) has fluctuated significantly, from 7.5 L/s/occ in the first version in 1973, 

to 2.5 L/s/occ (for non-smoking spaces) in 1981, to 10 L/s/occ in 1989, to 8.5 L/s/occ (at default 

occupant density) from 2004 to the present. Persily (2015) reports that VR standards worldwide 

similarly require between 3 and 10 L/s/occ in offices. These values persist despite the 2011 

conclusion of more than a dozen experts that “increasing ventilation rates above currently 

adopted standards and guidelines should result in reduced prevalence of negative health 

outcomes” (Sundell et al., 2011). According to Persily, based on his own experience on the 

Standard 62.1 committee, setting minimum VRs “has always been challenging based on limited 

research results to support specific values, pressures by some to lower rates based on energy 

considerations, and pressures by others to raise them based on IAQ benefits” (Persily, 2015).  

 Meanwhile, a number of research efforts have attempted to compare the multiple costs and 

benefits that create those pressures. Fisk (2012) showed that the economic benefits of increasing 

the minimum VR in U.S. offices from 8 to 15 L/s/occ, owing to improved work performance and 

reduced absence at the higher VR, were about 200 times the additional energy costs. Dutton et al. 

(2013) found that natural ventilation could expose office workers to outdoor pollutants whose 

public health impacts overwhelmed the benefits of reduced SBS symptoms, in economic terms. 

Chapters 2 and 3 of this thesis and two associated journal papers (Ben-David, Rackes, & Waring, 

2017; Rackes & Waring, 2017) examined specific alternative ventilation strategies like demand-

controlled ventilation and economizer control in offices, in terms of (i) profitable IAQ outcomes 

(work performance and reduced absenteeism), (ii) IAQ public health outcomes (from indoor 

exposure to outdoor PM2.5 and ozone); (iii) and energy consumption outcomes. In that work, we 
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also varied about two-dozen building, weather, and pollution parameters and showed that 

building and location specifics can influence ventilation impacts substantially. 

 Here we take the insights of the whole-sector analysis from the preceding two chapters and 

apply it to developing an evaluation framework that can be applied to a specific building by a 

unique decision-maker with distinct beliefs and preferences. We call this approach ‘outcome-

based ventilation’ (OBV) because it leads to making a ventilation decision based on consideration 

of its outcomes, rather than on a prescriptive formula. The outcome categories remain profitable 

IAQ, IAQ public health, and energy consumption, although the latter category has been expanded 

to make it possible to include values for ‘externalities’ associated with energy use. To incorporate 

scientific uncertainty and decision-maker preference, each outcome is associated with a loss, 

representing lost utility for the user. 

 The framework is developed here for offices because their parameters are relatively well 

characterized and they represent the largest U.S. commercial building activity at 18% of 

floorspace (U.S. Energy Information Administration (EIA), 2015c). (With some modifications, 

the basic ideas could be extended to other commercial building types.) After formulating the loss 

function, we use the existing dataset from described in Chapters 2 and 3 to examine to examine 

the implications of OBV in the context of day-averaged ventilation rates and outcomes. Then, a 

series of case studies illustrate how loss and loss-minimal VRs might change over the year. In 

Chapter 5, we will turn to the possibility of using the loss formulation for OBV to optimize 

ventilation dynamically, similar to Rackes and Waring (2014), but based on more detailed 

information about outcomes and their values. 
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4.2 Methods 

4.2.1 Minimizing loss 

 The basic principle of this outcome-based ventilation (OBV) decision-making framework is 

that well-characterized positive and negative consequences of ventilating commercial buildings 

can be organized into a governing equation centered on a unit of avoidable loss, called the loss 

function. However, doing so is not necessarily straightforward. The benefits and costs of 

ventilation fall upon different stakeholders, some of whom may be far from the building. At the 

same time, many of the impacts associated with indoor air exposures and environmental 

externalities are subject to substantial epistemic uncertainty. The approach taken, therefore, was 

to establish scientific ranges or distributions of impact strengths, and then allow an end user—i.e., 

a building owner, utility bill payer, property manager, business executive, institution, or other 

decision-making stakeholder—to select parameters to reflect her own preferences. This leaves 

discretion to the user, and avoids conferring certainty not indicated by the science. The user’s 

preferences transform an outcome into a loss, reflecting what a decision-maker would pay to 

avoid an outcome. Less loss is better, and the ventilation strategy or rate that minimizes loss is 

therefore optimal for a given user. These are (optimal) outcome-based ventilation strategies and 

ventilation rates. 

 Many potential ventilation outcomes were considered for inclusion. The rationale for the 

IAQ-related components included remains that described in Chapter 3: for an outcome to be 

included, it needed to have sound and practical methods to calculate its magnitude, assign it a 

value, and measure or estimate necessary physical quantities in a real building. For example, we 

did not include impacts of exposure to volatile organic compound concentrations, for which there 

is insufficient information to assign a loss value, and no reliable or cost-effective building-grade 

option for measuring. Additional outcomes can be added in the future as scientific knowledge 

evolves, without altering the general approach. 
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 The loss function L, over a given time horizon with a constant electricity price, is 

              ê = êëä + êíì + êäã + êéè + ê$ + êî 

                 = këä ∙ LWP + kíì�íì + käãâ$ï`,äã + kéèâ$ï`,éè + k$ñ$ ó^ + kîñî ó^  
(23) 

 The loss terms, which all have units of $/occ/h, associated with the six included outcomes 

are: 

1. LWP = PWP · LWP is loss due to reduced work performance (WP). Lost work 

performance (LWP, dimensionless) is a function of VR, expressing the performance at a 

VR relative to the maximum possible performance. Because the strength of the 

empirically derived VR-WP correlation is uncertain, the function depends on a user-

supplied estimate percentile (EP), as explained in Section 4.2.2. A unit change in LWP is 

valued at PWP, a user-supplied price ($/occ/h), most reasonably taken as an employer’s 

cost of compensation for an hour of employee work. 

2. LEA = PEArEA is loss due to employee excess absence (EA) due to sick leave. The excess 

absenteeism rate (rEA, dimensionless), or the fraction of time workers are absent over and 

above the minimum possible fraction, is a function of the VR. The function also depends 

on a user-supplied estimate percentile at which the empirical VR-absenteeism correlation 

is evaluated. A unit change in rEA is valued at PEA, a user-supplied price ($/occ/h), again 

likely an employer’s cost of compensation for an hour of employee work. 

3. LPM = PPMCexp,PM is loss due to costs of public health risks associated with exposure to 

PM2.5 at an average concentration of Cexp,PM (µg/m3). A unit change in Cexp,PM is valued at 

PPM ($/occ/h per µg/m3), which is set by a user based on tabulated results derived from 

evaluating epidemiological risk functions for different estimate percentiles and 

population characteristics. 

4. LO3 = PO3Cexp,O3 is loss due to costs of public health risks associated with exposure to 

ozone at an average concentration of Cexp,O3 (ppb). A unit change in Cexp,O3 is valued at 
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PO3 ($/occ/h per ppb), which is set based by a user based on tabulated results of 

evaluating epidemiological risk functions for different estimate percentiles and 

population characteristics. 

5. Le = PeEe/Σh is loss due to electricity consumption Ee (kWh), normalized by the total 

number of occupant-hours in the time horizon Σh (occ·h) to be on a comparable per-

occupant, per-hour basis. The value of a kWh of consumed electricity, Pe ($/kWh), can 

reflect both electricity utility rates and social costs of externalities associated with 

electricity generation and transmission. A time-varying version for dynamic electricity 

pricing or demand response is also possible, and is formulated in Section 4.2.5. 

6. Lg = PgEg/Σh is loss due to natural gas consumption Eg (kWh), also normalized by Σh. The 

value of a kWh of consumed natural gas, Pg ($/kWh), can reflect both natural utility rates 

and social costs of externalities associated with natural gas extraction, delivery, and 

combustion. 

 Together LWP and LEA are the profitable IAQ impacts, or IAQprofit, for which a business case 

can be made directly to revenue-maximizing actors. Together LPM and LO3 are the IAQ public 

health impacts, or IAQhealth, which will affect workers breathing the indoor air. Together Le and 

Lg are the energy consumption costs, both direct and social. (We neglected ventilation’s impact 

on sick building syndrome (SBS) symptoms, even though there is an existing relation that has 

been monetized, because, as Chapter 3 showed, work performance and sick-leave absenteeism 

have similar associations with ventilation but with values two orders of magnitude greater.) 

 The loss function depends on the values of five physical variables over the time horizon: the 

average VR, the average concentrations of PM2.5 and ozone to which occupants are exposed 

(Cexp,PM and Cexp,O3), and the electric and natural gas energy consumed (Ee and Eg). Well-

developed techniques are available for measuring or modeling all five quantities. As for the 

definition of “average” for the VR and exposed concentrations, some type of occupant-weighted 
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mean is intended. Here, where outcomes are primarily drawn from strategies that produce 

constant or relatively smooth ventilation over time, we use simple averages during the middle of 

the workday, but more sophisticated metrics may be appropriate for strategies under which 

ventilation can vary more sharply. 

 In addition to the five physical variables (VR, Cexp,PM, Cexp,O3, Ee, Eg), a value is also required 

for the occupant-hours sum Σh, which is formally the integral of the number of occupants, Nocc 

(occ), present in the control volume (building or zone) evaluated over the time horizon (t0 to tf): 

ó^ = òCBB ô dô
õú

õù
 (24) 

For example, if ten occupants each worked 8 hours during the time horizon, Σh would be 80 

occ·h. 

 The following subsections describe the rationale behind the individual outcomes included in 

the loss function in Equation (23), as well as guidance to set values of the user parameters. 

 

4.2.2 LWP: Loss due to reduced work performance 

 The first outcome is lost work performance (LWP), which varies with VR based on the 

relation for relative work performance, or the proportional difference in worker productivity 

achieved at two VRs, developed by Seppänen et al. (2006). The change in work performance per 

each L/s/occ change in the VR, which is valid from 6.5 to 47 L/s/occ, is shown in Figure 19a. The 

dark blue line is the central estimate, and the grey shaded area is the 95% confidence band of the 

fit by Seppänen et al. As developed in Chapter 3, this relation can be expressed as the sum of a 

deterministic function for the central estimate and another function indicating uncertainty. 

Seppänen et al. gave the former directly, and we fit the latter to the 95% confidence limits under 

an assumption of normal uncertainty distribution.  
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Figure 19 (a) Relative change in work performance (WP) per each 1 L/s/occ change in ventilation rate 
(VR), at central estimate, 95% confidence interval (CI), and selected estimate percentiles (EP); (b) 
reference value VRref, or the VR at which the change in WP is zero, as a function of the EP and the 
corresponding zWP value.  
 

 This approach yields a family of relations parameterized by what we call the estimate 

percentile (EP), in this case for work performance (EPWP). The user can set his or her estimate 

percentile, with a low EP indicating a weak relation (i.e., there is a small chance that the true 

relation is weaker, given the studies compiled by Seppänen et al.) and a high EP indicating a 

strong relation (i.e., a good chance of being stronger than the true relation). Figure 19a shows the 

curves for EPWP = 1%, EPWP = 5%, and EPWP = 95%, in addition to the central estimate, or EPWP 

= 50%. An EP value is associated with a standard normal variate, zWP, by means of the quantile 

function (inverse cumulative distribution function or CDF) of the standard normal distribution 

(Φ−1), 

Wëä = Φwx EPëä  (25) 

 Cumulative lost performance is judged relative to a reference ventilation rate, VRref, at which 

work performance is maximized. If EPWP > 50%, then the VRref = 47 L/s/occ, which is the upper 

limit for the fit from Seppänen et al. (2006). For EPWP < 50%, the maximum possible work 

performance is obtained where the resulting curve equals zero. Figure 19b shows the value of 

VRref obtained by solving to find the zeros for multiple zWP values. A fit to those results (R2 = 

1.00) allows VRref to be calculated directly as: 
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VR#$H = min 53.60 + 36.41Wëä + 11.30Wëä
Å + 1.39Wëä

è, 47  (26) 

 The work performance at a given VR relative to that at VRref is determined by integrating the 

curves for change per L/s/occ from Figure 19a from VR to VRref (Seppänen et al., 2006). Calling 

that indefinite integral g(·) and recognizing that lost work performance is unity minus that relative 

difference,  

LWP = 1 − exp à VR′ − à VR#$H  (27) 

where VR′ = min(max VR, 6.5 , VR#$H) L/s/occ limits VR to a valid range. The function g(·) can 

be written as the sum of a deterministic central tendency and uncertainty offset determined by 

zWP,  

à Y = u Y + Wëä ∙ ℎ Y  (28) 

where 

u Y = −76.38Ywx − 0.78Y ∙ lnY + 3.87Y 1000 (29) 

which was provided in (Fisk et al., 2012) based on the relation in (Seppänen et al., 2006) and 

ℎ Y = −11.617Ywx.ÅÜá + 0.607Y 1000 (30) 

was developed in Chapter 3. 

 The final relation between VR and LWP, the result of applying Equations (25) through (30), 

is shown in Figure 20 for selected EPWP values. For VR above VRref or below 6.5 L/s/occ, LWP is 

held at the limit value. To determine the loss for the work performance outcome, the 

dimensionless LWP is multiplied by PWP ($/occ/h). This is most likely an employer’s cost for an 

hour of productive employee time. Some guidance about compensation rates for office workers is 

given in Section 4.2.6. 
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Figure 20 Lost work performance as a function of 
total ventilation rate (VR), at central estimate, 95% 
confidence interval (CI), and selected estimate 
percentiles (EP). 

 

 

4.2.3 LEA: Loss due to excess employee absence 

 A second outcome is excess absence (EA) due to illness, based on the work of Milton et al. 

(2000). That study estimated the relative risk (RR) of sick leave absence at a low VR (estimated 

as 12 L/s/occ) compared to a higher VR (~24 L/s/occ). The study’s central and 95% CI estimates 

for RR were used to generate an uncertainty distribution. As with LWP, a user can set the 

relationship strength within this distribution by selecting an estimate percentile, in this case EPEA. 

By using the inverse CDF, as in Equation (25), EPEA can be associated with a standard normal 

variate zEA, and then the relative risk can be calculated as: 

RRK]% = exp	 0.116Wíì ∙ 1.53 (31) 

 To extrapolate to a continuous function, we adopted the exponential relative risk model 

formulated by Fisk et al. (2012), and took as fixed the 2% base absence rate that Milton et al. 

(2000) reported at 12 L/s/occ. Fisk et al. did not propose formal limits for the relation, but the 

original study only included VRs at 12 and 24 L/s/occ, and multiple studies have failed to find 

sick leave or illness absence relations at higher VRs (Mendell et al., 2013; Myatt et al., 2002). 
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Therefore, we limited the domain to 5–30 L/s/occ, defining VR′′ = min(max VR, 5 , 30) 

L/s/occ.  

 The excess absence rate rEA (dimensionless, or hours absent per hour worked) is then: 

�íì = 0.02 ∙ RRK]% xwnoÄÄ/xÅ − RRK]%wx.ü  (32) 

where the first term is the actual absence rate and the second is the minimum possible absence 

rate at 30 L/s/occ. Figure 21 illustrates Equation (32) for the central estimate (EPEA = 50%) and 

the 95% confidence band about it, as well as for the relation with EPEA = 1%, EPEA = 5%, and 

EPEA = 95%. The loss per hour due to an absent employee is the outcome rEA multiplied by PEA 

($/occ/h), likely total hourly employee compensation.  

 

 
Figure 21 Excess absence rate rEA as a function of 
total ventilation rate (VR), at central estimate, 
95% confidence interval (CI), and selected 
estimate percentiles (EP). 

 

 

4.2.4 LPM and LO3: Losses due public health risks of PM2.5 and ozone exposure 

 Indoor air quality also impacts occupant health in ways that do not figure into the business 

interests of a decision-maker like a business owner or office manager. Because these impacts are 

incremental, or modify a small base risk, it makes sense to think of them in the aggregate as 

public health costs. Many such risks with indoor pollutant exposure have been identified (Chan et 
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al., 2016; Logue et al., 2012), but nearly all present insurmountable challenges in terms of real-

time estimation or of impact quantification. 

 However, two species introduced from outdoors pass both tests: particulate matter with 

aerodynamic diameter < 2.5 µg (PM2.5) and ozone (O3). Multiple large-population studies have 

established health impacts associated with outdoor concentrations, and a significant amount of 

exposure to outdoor pollutants occurs indoors (Clausen et al., 2011; Riley et al., 2002). Though 

uncertainty remains about applying this information to indoor exposures (Brook et al., 2010), we 

follow the lead of multiple other indoor air studies that have done so (Bekö et al., 2008; Dutton et 

al., 2013; Logue et al., 2012). For an individual, the change in annual incidence risk Δyij of a 

health endpoint j due to a change in average concentration ΔCi of pollutant i (PM2.5 or ozone) can 

be modeled with a concentration-response (C-R) function (Fann et al., 2012) as: 

∆SV° = SU,°(¢£§•Δ¶§ß® − 1) (33) 

where βij is the response coefficient for endpoint j to pollutant i, and y0,j is the population baseline 

incidence of the endpoint (occ−1 year−1). The variable ft is the duration of the exposure expressed 

as a fraction of a year. The coefficient βij has units of (µg/m3)−1 for PM2.5 and (ppb)−1 for O3, and 

can be derived from RR exposure estimates from epidemiological studies, while the baseline 

incidences can be determined from broader population health statistics (e.g., from the U.S. 

Centers for Disease Control). Each endpoint can be assigned a monetary value Mj, allowing 

calculation of the expected costs of risk changes. 

 There were eight health endpoints for PM2.5 and seven for ozone. Table 21 lists RR values for 

the endpoints and baseline prevalence y0,j for non-mortality endpoints. Table 22 gives baseline 

mortality prevalence for selected populations.  

Table 23 lists endpoints’ monetary values Mj. The starting point for most of this information was 

Dutton et al. (2013), itself largely based on standard U.S. Environmental Protection Agency 

procedures (U.S. EPA, 1999). We then made a number of modifications and additions. For PM2.5 
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mortality, we included not only the American Cancer Society cohort follow-up (Pope et al., 2002) 

but also the higher RR estimates of the Harvard six cities study follow-up (Laden et al., 2006). 

For mortality linked to long-term O3 exposure, endpoints were altered to match the conclusions of 

Jerrett et al. (2009), who did not find a significant link to all-cause mortality, but did find one to 

respiratory mortality. Because respiratory mortality has a much lower baseline incidence, this 

correction substantially lowered O3-related mortality and monetary benefits. That reduction was 

partially reversed by inclusion of a short-term ozone mortality C-R function (Smith, Xu, & 

Switzer, 2009; Zanobetti & Schwartz, 2008). There were other minor changes, such as for 

coronary revascularization and non-fatal stroke relations to PM2.5 (K. A. Miller et al., 2007; 

Mozaffarian et al., 2015; U.S. CDC, 2010) and for hospital admissions (Burnett, Cakmak, Brook, 

& Krewski, 1997). Though presented here for the first time, these are the same parameters used to 

characterize the health endpoints of indoor PM2.5 and ozone exposure in Chapter 3. 

 

Table 21 Concentration-response (C-R) function parameters and baseline incidence for health endpoints 
associated with PM2.5 and ozone. Relative risk (RR) values are per concentration change of 10 µg/m3 for 
PM2.5 or 10 ppb for ozone. 

 

Endpoint RR (95% CI) Source GM GSD Mean SD per 
100,000

Source

PM2.5 endpoints (RR per 10 µg/m3)
Mortality, all-cause 1.06 (1.02–1.11) Pope et al., 2002 1.0600 1.0218 5.83E-03 2.16E-03
Mortality, all-cause 1.16 (1.07–1.26) Laden et al., 2006 1.1600 1.0426 1.48E-02 4.17E-03
Chronic bronchitis 2.48 (2.18–3.00) Dutton et al., 20131 2.4843 1.0851 9.10E-02 8.16E-03 40 Dutton et al., 20131

Coronary revascularization 1.20 (1.00–1.43) Miller et al., 20072 1.2000 1.0955 1.82E-02 9.12E-03 1268 U.S. CDC, 2010
Non-fatal stroke 1.28 (1.02–1.62) Miller et al., 20072 1.2840 1.1245 2.50E-02 1.17E-02 1244 Mozaffarian et al. 20153

Hospital admission, respiratory 1.04 (1.02–1.05) Burnett et al., 1997 1.0363 1.0080 3.57E-03 7.99E-04 367 Burnett et al., 19974

Hospital admission, cardiac 1.02 (1.00–1.05) Burnett et al., 1997 1.0227 1.0131 2.24E-03 1.31E-03 659 Burnett et al., 19974

Minor restricted activity days 1.08 (1.06–1.09) Dutton et al., 20131 1.0768 1.0072 7.40E-03 7.14E-04 2140 Dutton et al., 20131

Asthma attack 1.01 (1.00–1.03) Dutton et al., 20131 1.0141 1.0056 1.40E-03 5.59E-04 2700 Dutton et al., 20131

Ozone endpoints (RR per 10 ppb)

Mortality, short-term 1.00 (1.00–1.01) Smith et al., 2009; 
Zanobetti & Schwartz, 2008 1.0049 1.0012 4.89E-04 1.20E-04

Mortality, respiratory 1.03 (1.01–1.05) Jerrett et al., 2009 1.0290 1.0095 2.86E-03 9.42E-04
Chronic asthma 1.32 (1.01–1.72) Dutton et al., 20131 1.3231 1.1442 2.80E-02 1.35E-02 219 Dutton et al., 20131

Hospital admission, respiratory 1.06 (1.04–1.08) Burnett et al., 1997 1.0589 1.0093 5.72E-03 9.24E-04 367 Burnett et al., 19974

Hospital admission, cardiac 1.05 (1.02–1.08) Burnett et al., 1997 1.0494 1.0138 4.82E-03 1.37E-03 659 Burnett et al., 19974

Minor restricted activity days 1.02 (1.01–1.04) Dutton et al., 20131 1.0222 1.0066 2.20E-03 6.61E-04 2140 Dutton et al., 20131

Asthma attack 1.02 (1.00–1.03) Dutton et al., 20131 1.0182 1.0071 1.80E-03 7.04E-04 2700 Dutton et al., 20131

------ See Table 22 ------

------ See Table 22 ------

1. All values cited from Dutton et al. (2013) were used without modification; see that reference for the original study sources.
2. The Women's Health Initiative (Miller et al., 2007) estimated hazard ratios for 58,610 women, used here as relative risk estimates regardless of sex.
3. Average prevalence for all sexes and races, for ages 20 to 59.
4. Hospital admission baseline incidence estimated from total prevalence in study population (metropolitan Toronto) divided by the study population, unadjusted.

Effect estimates RR lognormal 
distribution

Beta normal 
distribution Baseline incidence, y 0

------ See Table 22 ------
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 Some of the most important changes were to the baseline incidence of mortality, by far the 

highest-valued endpoint. Using total population mortality rates, as some previous studies have 

done, is appropriate for residential assessments but overstates impacts in offices, because non-

working populations have higher death rates. Therefore, we adjusted all baseline mortality rates 

to reflect averages for ages 25–64. In addition, death rates differ substantially by educational 

attainment and finer age gradations (Table 22). Costs were calculated for some of these 

subgroups to enable more targeted loss valuation. 

 
 

Table 22 Death rates per 100,000 for U.S. residents and selected groups. 
  Deaths rate, per 100,000 
  Age 25-34 Age 35-44 Age 45-54 Age 55-64 Average3 
All-cause mortality1      

All education levels 107 172 408 862 332 
High school or less 190 286 638 1271 518 
Some college or greater 57 99 228 541 196 

Respiratory mortality2 1 3 14 51 17 
All data from U.S. CDC National Vital Statistics Reports, Vol. 64 No. 2, February 2016.  
1. For total mortality, the values from two sets of states were averaged, weighted by the 
sets' populations. Death rates for high school and less than high school, which were very 
similar, were also averaged, weighted by each group's proportion of total deaths.  
2. Not including deaths from influenza and pneumonia, pneumoconiosis and chemical 
effects, or pneumonitis due to solids and liquids. 
3. For ages 25-64. For total mortality, the age-adjusted figure provided by CDC was 
used. For respiratory causes, it is the population-weighted average of the four age bins. 

 

 
Table 23  Monetary values of public health IAQ endpoints. 
Endpoint Mj (2016 $) Source 
Mortality $8,920,800 (Dutton et al., 2013) 
Chronic bronchitis $479,058 (Dutton et al., 2013) 
Coronary revascularization $101,847 (Stroupe et al., 2006) 
Chronic asthma $54,798 (Dutton et al., 2013) 
Non-fatal stroke $21,416 (Guijing Wang et al., 2014) 
Hospital admission1 $9,050 (AHRQ, 2016) 
Minor restricted activity days $71 (Dutton et al., 2013) 
Asthma attack $45 (Dutton et al., 2013) 
General note: All values cited from (Dutton et al., 2013) were used without 
modification; see that reference for the original sources. 
1. Hospital admission for general medical treatment, excluding mental health, 
childbirth and neonatal treatment, and admissions for surgery. 
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 Combining the costs of all endpoints associated with a concentration change ΔCi of a 

pollutant, sustained over a fraction of the year ft, we have: 

Δ	risk	costs V = 	 ≠°SU,°(¢£§•Δ¶§ß® − 1)
°

≈ ≠°SU,°TV°ΔâVu_
°

 (34) 

where the simplification holds because ¢Ø − 1 ≈ ∞ for very small a. Testing with sampling from 

the distributions of βij indicated that the error introduced by linearization was negligible when ft 

represented a day, and almost never greater than 5% even when ft represented a full work year of 

consistently very large concentration changes.  

 Hourly risk costs are evaluated by setting ft to 1/8760. We define a price as: 

kV = ≠°SU,°TV° 8760
°

 (35) 

that indicates the value (in $, often expressed ¢) of a one unit change in indoor concentration 

(µg/m3 or ppb) for one occupant for one hour. We calculated distributions of kV values using a 

Monte Carlo sample from the TV° distributions listed in Table 21, and other parameters in Table 

22 and  

Table 23. For PM2.5 mortality, we selected with equal probability from the American Cancer 

Society (Pope et al., 2002) and Harvard six cities (Laden et al., 2006) studies’ RR estimate 

distributions. Results indicated that, for both PM2.5 and ozone, total mortality was by far the 

largest contributor due to its high monetary value. There were additional moderate contributions 

from chronic bronchitis and coronary revascularization for PM2.5 (4–21%, depending on the 

subgroup’s death rate) and chronic asthma for ozone (11–41%, depending on subgroup). No other 

endpoint contributed more than 6% in any group.  

 Figure 22 shows inverted CDF plots of the käã and kéè results against the estimate 

percentiles (EP), and Table 24 gives some specific numerical results. For the ‘All’ group, death 

rates for all people aged 25–64 were used, while ‘HS or less’ and ‘College’ divided the working 
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age population by education level (where HS stands for high school), and ‘College, young’ used 

death rates for college-educated 25–44 year-olds. Because of the dominant influence of mortality 

risk, the prices for the young college-educated population were extremely low, while those for the 

general non-college-educated population were 3 to 5 times greater. For PM2.5, the two distinct 

regions results represent RR based on (Pope et al., 2002) below the 50th percentile, and on 

(Laden et al., 2006) above the 50th percentile. 

 

 
Figure 22 Unit prices for PM2.5 and ozone exposure expressed in cents (¢), derived from sampling public 
health concentration-response functions and endpoint monetary values, versus the estimate percentile (EP) 
of the Monte Carlo results. 
 

 

 
Table 24  Prices PPM and PO3 for unit, hour-long, per-occupant changes in concentration. Prices 
are shown in cents. PM2.5 prices are for the blended sample including both American Cancer 
Society and Harvard Six Cities relative risk distributions. 

 

 

1 2.5 5 25 50 75 95 97.5 99
PPM (¢/occ/h/(µg/m3))

All 1.0 1.3 1.6 2.5 3.6 5.6 7.4 7.9 8.5
High school or less 1.3 1.7 2.1 3.6 5.2 8.4 11.2 12.0 12.9
Some college or more 0.8 1.0 1.1 1.7 2.3 3.5 4.6 4.9 5.2
College, and young 0.6 0.6 0.7 1.0 1.3 1.7 2.2 2.3 2.5

PO3 (¢/occ/h/ppb)
All 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.4 0.4
High school or less 0.2 0.2 0.2 0.3 0.4 0.4 0.5 0.5 0.5
Some college or more 0.1 0.1 0.1 0.2 0.2 0.2 0.2 0.3 0.3
College, and young 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Subpopulation variations based only on differences in mortality rates. 'All' includes ages 25-64 and 'young' includes ages 25-44.

PM2.5 and ozone prices for selected estimate percentiles (EP)
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 To assess loss in comparison to a complete absence of the pollutant, the relevant 

concentration change ΔâV is just the concentration âV. Therefore, the instantaneous risk cost is 

kVâV ô , and loss is determined by multiplying this expression by the number of occupants 

present, integrating over the time horizon, and then normalizing on a per-occupant, per-hour 

basis, as in: 

êV =
òCBB ô kVâV ô ±ôõú

õ≤
ó^

= kV
òCBB ô âV ô ±ôõú

õ≤
ó^

= kVâ$ï`,V (36) 

where the implicitly defined quantity Cexp,i is simply the occupant-weighted average concentration 

of pollutant i to which occupants are exposed during time horizon, expressed in the units of 

pollutant i. 

 

4.2.5 Le and Lg: Losses due to electricity and natural gas consumption 

 The final two outcomes are electricity and natural gas consumption, respectively denoted Ee 

and Eg (kWh) and valued at prices Pe and Pg ($/kWh, often expressed in ¢/kWh). The prices can 

include standard utility rates as well as social costs, if desired. For a static electricity price, the 

losses are simply the price times the usage, normalized by the number of occupant hours �h: 

ê$ = k$ñ$ ó^ 	(for	constant	k$) (37a) 

êî = kîñî ó^ (37b) 

 Dynamic electricity pricing can also be incorporated—a possibility we explore in Chapter 5. 

Dynamic pricing structures are relevant in smart-grid settings, for time-of-use (TOU) pricing and 

demand-response applications. They might also be needed if social costs change as a supply mix 

changes, for example, with intermittent use of on-site solar. In either case, the loss is then the 

integration over time of the product of instantaneous price and the consumption rate ñ$Ñ(ô) (kW), 
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ê$ =
1
ó^

k$(ô)ñ$Ñ(ô) ±ô
õú

õ≤
 (38) 

 The energy consumption prices Pe and Pg can have two contributors: utility rates and social 

costs. The first two columns of Table 25 show the median of annual average commercial utility 

rates for grid electricity and for purchased natural gas from 2005 to 2015, broken down by U.S. 

state (U.S. Energy Information Administration (EIA), n.d.-a). A majority of states had median 

commercial electricity prices of 8.4–11.7 ¢/kWh, and all states except Hawaii were 6.9–17.3 

¢/kWh. For natural gas, the majority of states’ commercial prices were 2.9–3.8 ¢/kWh, and all 

except Hawaii were $2.5–5.4 ¢/kWh. (For both sources, prices were also relatively stable over 

time during 2005 to 2015, only very rarely deviating from the medians by more than 2 ¢/kWh.) 

 The second contributor to energy prices is a judgment related to the “social costs” of energy 

production, generation, and distribution that are not reflected in current market prices. What to 

include among externalized costs and how to calculate them are subjects of substantial debate and 

uncertainty. For electricity, the largest social cost is often due to public health impacts of 

exposure to regional air pollution generated from coal-fired (and to a lesser extent, oil and natural 

gas) power plants. Machol and Rizk (2013), building on the work of Fann (Fann, Fulcher, & 

Hubbell, 2009), calculated the public health impacts of existing U.S. power generation. Their 

work only considers PM2.5, but includes both primary or directly-emitted particles and secondary 

particles resulting from precursors SO2 and NOx generated by fossil fuel combustion. Their 

calculation is based on pollution inventories for all U.S. power plants, used as inputs to a model 

that includes atmospheric chemistry, weather, and the geographic distribution of U.S. population.  
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Table 25 Reference prices by U.S. state for 
components of Pe and Pg. Utility rates are medians 
of annual averages from 2005 to 2015. The health 
costs are for combustion-related public health 
impacts for grid electricity (Machol & Rizk, 2013). 

 

Natural Gas 
utility rate
(¢/kWh)

Electric grid 
utility rate
(¢/kWh)

Electric grid, 
combustion 
health costs

(¢/kWh)

U.S. 3.3 10.9 24.5
Alabama 4.6 10.8 32
Alaska 2.8 15.3 -
Arizona 3.7 9.9 10
Arkansas 3.4 8.0 17
California 2.9 14.5 7
Colorado 2.8 9.6 12
Connecticut 3.6 16.5 4
Delaware 5.0 11.6 42
District of Columbia 4.4 13.4 -
Florida 3.8 10.5 20
Georgia 4.0 9.9 33
Hawaii 13.3 30.4 -
Idaho 2.9 6.9 -
Illinois 3.4 9.4 25
Indiana 3.0 9.1 36
Iowa 2.8 8.4 27
Kansas 3.7 8.8 17
Kentucky 3.5 8.5 28
Louisiana 3.4 9.2 14
Maine 4.4 13.3 3
Maryland 3.7 12.2 71
Massachusetts 4.1 15.4 15
Michigan 3.3 10.4 31
Minnesota 2.7 8.9 13
Mississippi 2.9 10.3 14
Missouri 3.9 7.9 26
Montana 3.2 9.3 15
Nebraska 2.5 8.2 26
Nevada 3.3 10.9 5
New Hampshire 4.8 15.1 42
New Jersey 3.4 13.9 19
New Mexico 2.7 9.5 12
New York 3.5 17.3 11
North Carolina 3.6 8.7 23
North Dakota 2.6 7.7 41
Ohio 3.3 9.9 48
Oklahoma 4.4 8.1 13
Oregon 3.5 8.3 6
Pennsylvania 3.8 10.4 50
Rhode Island 5.4 14.4 -
South Carolina 3.5 9.7 30
South Dakota 2.6 8.0 34
Tennessee 3.4 10.3 27
Texas 2.8 10.3 15
Utah 2.6 7.7 11
Vermont 4.4 14.4 -
Virginia 3.4 8.1 31
Washington 3.8 7.8 10
West Virginia 3.7 7.7 20
Wisconsin 2.9 10.7 29
Wyoming 2.7 8.1 21
Note: The California PM2.5 combustion-related health social cost 
reflects externalities incurred in other states due to imported 
electricity.



www.manaraa.com

 
 120 

 
 The third column of Table 25 shows Machol and Rizk’s average results for each U.S. state 

for these combustion-related PM2.5 health impacts of U.S. electricity generation. Even the states 

with the lowest estimates—Connecticut, Maine, Nevada, and Oregon—have combustion-related 

externalities $0.03–0.06 per kWh, or 25–70% as much as those states’ respective median 

commercial retail utility rates. The most affected states are those like Maryland ($0.71 /kWh), 

Pennsylvania ($0.51 /kWh), and Ohio ($0.48 /kWh), with continued reliance on coal-fired 

generation and significant population centers, and where PM2.5 exposure externalities are 5 to 6 

times as great as the direct cost of electricity. (Other researchers have arrived at much lower 

estimates, discussed below.) 

 Perhaps the most well-known energy externality is the social cost of carbon (SC-CO2), which 

attempts to capture the impacts of a marginal unit of energy on future climate change damages. 

The US Government Interagency Working Group on Social Cost of Greenhouse Gases and U.S. 

EPA (Interagency Working Group on Social Cost of Greenhouse Gases, 2016; U.S. EPA, 2015c) 

have estimated SC-CO2 values ranging from $13–130 per ton of CO2 emitted (updated to 2016 

US$). The low estimate is for a high discount rate (5%), indicating low present valuation of future 

impacts, and the highest value is for a close to worst-case (95th percentile) future damage 

scenario. More conservatively, Nordhaus (2014) has estimated the 2015 SC-CO2 at $23 per ton of 

CO2. Recently, Moore and Diaz (2015) incorporated feedbacks between climate change economic 

impacts and the discount rate, and determined the optimal SC-CO2 trajectory to limit global 

temperature rise to 1.5 °C; the value of that trajectory in 2015 was $220 per ton of CO2.  

 For electricity generation, one can use SC-CO2 values with source emission factors—i.e., ton 

of CO2 emitted per kWh delivered (U.S. Energy Information Administration (EIA), n.d.-b, n.d.-c; 

U.S. EPA, 2015a)—to determine the climate change social cost of electricity consumption. Table 

26 shows resulting figures for fossil fuel generation sources. For the total U.S. electric grid, the 

marginal value of climate impacts ranges from 0.9–15.5 ¢/kWh. The costs may go even higher in 
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areas with significant dependence on coal for electricity generation, and might be lower in some 

areas of the country with significant hydroelectric or wind generation. 

 

Table 26 Climate change components of Pe, in U.S. cents per kWh, for fossil fuel generation sources and 
the marginal value for the U.S. electric grid, at multiple social costs of carbon dioxide (SC-CO2) emission 
estimates. Note for natural gas, the estimates are only for CO2 from combustion, not warming due to 
methane leakage. 

 

 

 Table 27 summarizes the range of impact estimates for multiple types of externalities, 

including climate-related and combustion-related costs as well other externalities like 

environmental damages due to fuel extraction and reduced agricultural yields as a function of 

pollution. The estimate range is large. For example, Machol and Rizk’s national PM2.5 exposure 

cost estimate is $0.14–0.35 /kWh, but Muller et al. (Muller, Mendelsohn, & Nordhaus, 2011) 

only estimated it at $0.02 /kWh. According to Machol and Rizk, Muller et al. arrived at such a 

low estimate because they did not “examine the variation at the state or plant level” and also use 

“a source-receptor (SR) model which does not account for nonlinearities resulting from photo-

chemical reactions.” Other estimates have fallen in between (Epstein et al., 2011; Shindell, 2015). 

Summing the literature estimates of the various social costs yields a range 4.8–53.6 ¢/kWh, for 

the U.S. average. Excluding combustion-related public health impacts, which can be added for a 

particular state from Table 25, U.S. average social cost totals are 3.2–18.6 ¢/kWh. 

 

Generation source Emission factor
(ton CO2 per kWh)

SC-CO2 
= $13 / ton

SC-CO
 = $23 / ton

SC-CO2

= $45 / ton
SC-CO2

= $67 / ton
SC-CO2

= $130 / ton
SC-CO2

= $220 / ton

Coal 9.93E-04 1.3 2.2 4.4 6.7 12.9 21.8

Natural gas 3.93E-04 0.5 0.9 1.8 2.7 5.1 8.7

Oil 8.37E-04 1.1 1.9 3.7 5.6 10.9 18.4

Marginal (non-baseload) national grid 7.03E-04 0.9 1.6 3.1 4.7 9.2 15.5
Emission factors for electricity generation from US EPA (2016) GHG inventory figures and US EIA (2014) net generation figures. Non-baseload factor from US EPA 
(2015) eGRID.
From left to right, SC-CO2 values are from US EPA (2014) average scenario and 5% discount rate; Nordhaus (2014); US EPA (2014) average scenario and 3% 
discount rate; US EPA (2014) average scenario and 2.5% discount rate; US EPA (2014) 95th percentile scenario and 3% discount rate; and Moore and Diaz (2015). 
EPA values are for costs in mid-2017, and others are for costs in 2015. All figures adjusted to 2016 US$.
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Table 27 Summary of social cost estimate ranges for electricity generation for the U.S. grid, in U.S. cents 
(¢) per kWh. 

 

 

 Although most social cost research has focused on the externalities of electricity generation, 

natural gas delivered for consumption on site for space or water heating also has significant social 

costs. Unfortunately, it is difficult to assign costs to many local impacts of natural gas use, 

transportation, and extraction. While we discuss some of these briefly at the end of this section, 

only the climate impact of natural gas use has been included at present. Table 28 summarizes 

climate change impacts per kWh of delivered heat content of natural gas. The cost depends on 

three principal factors: the SC-CO2 value, the system-wide methane leakage rate, and the global 

warming potential time horizon. 

 

Table 28 Social costs of purchased natural gas for on-site combustion, per kWh of delivered heat content, at 
six possible social cost of carbon dioxide (SC-CO2) values. The first line assumes no methane leakage. The 
remainder of the table uses hypothetical leakage rate at two different time horizons to calculate prices 
including climate impacts of methane leakage.  

 

 

Climate 
impacts

Combustion-
related health 

impacts

Other impacts, 
e.g. crops, 
extraction

Social costs, 
U.S. electric 
grid (¢/kWh)

Source

Social cost of carbon � 0.9–15.5 Various, see Table 26

Combustion PM2.5 impacts on public health � 14.0–35.0 Machol & Rizk (2013)

"Gross external damages" � � 1.6 Muller et al. (2011)

"Social cost of atmospheric release" � � � 6.5–20.1 Shindell (2015)

Total coal lifecycle � � � 3.9–11.6 Epstein (2011)

Coal lifecycle (excluding climate and combustion) � 2.3–3.1 Epstein (2011)

SUM of non-overlapping social costs � � � 4.8–53.6

SUM of costs, excluding combustion-related health � � 3.2–18.6

Leakage 
rate

Time 
horizon1 

(years)

Emission factor
(ton CO2e per 

kWh)

SC-CO2 
= $13 / ton

SC-CO
 = $23 / ton

SC-CO2

= $45 / ton
SC-CO2

= $67 / ton
SC-CO2

= $130 / ton
SC-CO2

= $220 / ton

0% - 1.81E-04 0.2 0.4 0.8 1.2 2.4 4.0
1% 100 2.03E-04 0.3 0.5 0.9 1.4 2.6 4.5
3% 100 2.49E-04 0.3 0.6 1.1 1.7 3.2 5.5
5% 100 2.97E-04 0.4 0.7 1.3 2.0 3.9 6.5
10% 100 4.26E-04 0.6 1.0 1.9 2.9 5.5 9.4
1% 20 2.37E-04 0.3 0.5 1.1 1.6 3.1 5.2
3% 20 3.54E-04 0.5 0.8 1.6 2.4 4.6 7.8
5% 20 4.75E-04 0.6 1.1 2.1 3.2 6.2 10.4
10% 20 8.01E-04 1.0 1.8 3.6 5.4 10.4 17.6

The global warming potential (GWP) of methane is 34 times that of CO2 over a 100 year time horizon, and 86 times as great over a 20 year horizon (Myhre 
et al., 2013).
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 Assuming no methane leakage, the climate-related externality price is 0.2–4.0 ¢/kWh. These 

prices are much lower than those associated with using natural gas for electricity generation, 

where about two-thirds of heat content is not converted to electricity. However, if methane 

leakage during extraction and transportation is taken into account, the climate change social costs 

associated with natural gas use could be much larger.  

 The U.S. EPA estimates a leakage rate of 2.5% for conventional gas and 4.0% for 

hydraulically fractured shale gas (Cathles, Brown, Taam, & Hunter, 2012; U.S. EPA, 2016). This 

would imply a 3.5% overall leakage rate, since in 2015 about two-thirds of U.S. natural gas was 

produced by hydraulic fracturing (U.S. Energy Information Administration (EIA), n.d.-d). Some 

researchers have endorsed this rough magnitude (Cathles et al., 2012), but lower estimates also 

exist (D. T. Allen et al., 2013). Other research has suggested that methane emissions associated 

with natural gas production may be significantly greater (Karion et al., 2013; S. M. Miller et al., 

2013), and that wells may leak substantially more methane than expected (Ingraffea, Wells, 

Santoro, & Shonkoff, 2014), potentially for a very long time after production has ceased (Kang et 

al., 2014), and that methane emissions from shale gas production systems can rise even as drilling 

activity declines (Goetz et al., 2017). In addition, recent studies suggest urban distribution 

infrastructure could be a significant loss pathway, leaking an estimated 2.7% in the local system 

in Boston, for example (McKain et al., 2015). One synthesis of the research compiled leakage 

rate estimates of 1.7–6.0% for conventional gas and 3.6–7.9% for shale gas (Howarth, Santoro, & 

Ingraffea, 2011), while another surveyed the research and reported a range of 0.2–10%, globally 

(Balcombe, Anderson, Speirs, Brandon, & Hawkes, 2017). 

 The other significant influence on the climate impact of methane is the time horizon, since 

methane does not persist in the atmosphere as long as does CO2. Some have argued that a 100-

year horizon is appropriate under an assumption of gradual change (Cathles et al., 2012), while 

others hold that a 20-year frame is also important to avoid sudden climate system tipping points 

that could create feedback effects (Howarth, Santoro, & Ingraffea, 2012). Table 28 includes 
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estimates for both, at four hypothetical natural gas system leakage rates, for both time horizons’ 

methane global warming potential (Myhre et al., 2013). 

 Social cost estimates were only made for the climate change externalities of natural gas use, 

but there are many other impacts that have costs, even if they are complex and difficult to 

quantify. In particular, Sovacool and Finkel & Law have summarized many of the negative 

consequences of shale gas development and transportation, including: use and pollution of fresh 

water, local air pollution from diesel pumps and trucks, leakage and accidents at sites and 

pipelines, toxic and radioactive wastewater and hazardous waste, local health impacts ranging 

from increased asthma incidence to potential miscarriages and cancers, earthquakes, reduced 

property values, and significant public expense for infrastructure and environmental remediation 

(Finkel & Law, 2011; Sovacool, 2014). Also not priced in this work, but worth noting, are any 

possible negative impacts from natural gas at the combustion site, i.e., near the building heated 

with natural gas. Though a recent study found few impacts from small boilers and furnaces on 

local levels of ozone or PM2.5 (Penn et al., 2016), there could potentially be other combustion 

products with health impacts.  

 

4.2.6 Reference values for user parameters in the loss equation 

 To explore the influence of user preferences, we developed reference values for all 

parameters used in the OBV loss function. For PWP and PEA, we compiled data on employment 

numbers, hourly wages, and hourly compensations for office workers in various fields from the 

U.S. Bureau of Labor Statistics (U.S. DOL, 2016a, 2016b). Table 29 lists this information. The 

employment-weighted average hourly wage was $31, while the average total compensation 

including benefits was $46 per hour. 
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Table 29 Summary of occupation categories, base wages, and total compensation per hour for U.S. office 
workers 

 

 

 For all user parameters, we selected low, medium, and high “reference values” to use to 

evaluate to OBV framework (Table 30). For parameters with distributions, the low, medium, and 

high reference values corresponded to the 5th, 50th, and 95th percentiles. That applied to the 

EPWP and EPEA settings that determine the strength of work performance and excess absenteeism 

relations to the VR. It also applied to the EPPM and EPO3 settings that determine the strength of 

public health impacts to changes in PM2.5 and ozone concentrations, respectively; for public 

health relations, the values based on ‘All’ (ages 25–64) death rates were used. The reference 

values for PWP and PEA were based on total compensation (i.e., including benefits) per hour, with 

the low value corresponding to office and administrative support occupants, the medium value to 

the $46/hour weighted average for all office workers, and the high value to management 

occupations. 

 

U.S. Bureau of Labor Statistice (BLS) category BLS code Employment 
(millions)

Fraction of 
office workers 

(%)

Average wage 
($/h)

Average 
compensation 

($/h)

Management Occupations 11-0000 6.9 14% $58 $86
Business and Financial Operations Occupations 13-0000 7.0 14% $37 $55
Office and Administrative Support Occupations 43-0000 21.8 44% $18 $27
Computer and Mathematical Occupations 15-0000 4.0 8% $44 $64
Building Cleaning Workers 37-2010 3.1 6% $13 $19
Supervisors of Building, Grounds, and Maintenance Workers 37-1000 0.3 1% $22 $32
Architecture and Engineering Occupations 17-0000 2.5 5% $42 $62
Legal Occupations 23-0000 1.1 2% $52 $77
Art and Design Workers 27-1000 0.6 1% $26 $39
Media and Communication Workers 27-3000 0.6 1% $31 $46
Media and Communication Equipment Workers 27-4000 0.2 0% $27 $40
Sales Representatives, Services 41-3000 1.8 4% $35 $51
Weighted average - 49.9 100% $31 $46
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Table 30 Low, medium, and high reference values for user-defined 
parameters in the loss function. The PPM and PO3 values correspond 
to respective EPPM and EPO3 values for all office occupants ages 
25-64. 

 

 

 For Pe the low value is the lowest state utility rate (Idaho) from Table 25. The medium value 

is the median state utility rate (9.9 ¢/kWh) plus a modest social cost estimate: 4.8 ¢/kWh, which 

was the lowest possible “Sum of non-overlapping social costs” for U.S. electricity generation 

from Table 27. The high value is the utility rate (10.4 ¢/kWh) plus public health cost of 

combustion for electricity generation (50.0 ¢/kWh) for the state with the second highest sum of 

those values (Pennsylvania), plus the highest estimate (18.6 ¢/kWh) for the “Sum of costs, 

excluding combustion-relation health” from Table 27. 

 For Pg the low value is the lowest state utility rate (Nebraska). The medium value is the 

median state utility rate (3.4 ¢/kWh) plus a small climate change externality (0.3 ¢/kWh) based 

on the lowest possible SC-CO2 value with 1% methane leakage and a 100-year time-horizon. The 

high value is the utility rate (5.4 ¢/kWh) in the second most expensive state (Rhode Island) plus a 

climate change externality (10.4 ¢/kWh) based on the highest possible SC-CO2 value with 5% 

methane leakage and a 20-year time-horizon. 

 

4.2.7 Office sector dataset 

 We explored the magnitude of the loss function over the same dataset of energy simulation 

results that has been described in Chapter 2 and Chapter 3. For the present work, we sampled to 

achieve a dataset that was 75.9% small offices and 24.1% medium ones, matching the distribution 

User parameter Unit Low 
value

Medium 
value

High 
value

EPWP, EPEA, EPPM, EPO3 % 5 50 95
PWP, PEA $/occ/h 27 46 86
PPM ¢/(µg/m3)/occ/h 1.56 3.57 7.38
PO3 ¢/ppb/occ/h 0.18 0.26 0.34
Pe ¢/kWh 6.9 14.7 79.0
Pg ¢/kWh 2.5 3.7 15.8
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for number of office types in the U.S. (U.S. Energy Information Administration (EIA), 2015a). In 

addition, whereas in previous chapters the dataset was examined at an annual timescale, here 

individual days’ results are examined. The final sampled datasets, believed to be good statistical 

representations of the U.S. small-to-medium-large office stock, had 5000 instances for annual 

results, with 1,260,000 instances for day-resolved values. Of the simulated ventilation strategies, 

four are included here: the baseline, doubled mechanical ventilation, or 2×VR; differential 

enthalpy economizing with the baseline VR as the minimum, or Econ; and demand-controlled 

ventilation (DCV), in which enough outdoor air was provided to avoid exceeding 950 ppm of 

CO2 in the critical (highest CO2 concentration) zone. 

 Figure 23 includes histograms of results of five key simulation outputs over the dataset, for 

the four ventilation strategies used in this work. These are day-resolved values, and are averages 

during primary occupied hours of 8 a.m. to 6 p.m. The VR, here and in all that follows, refers to 

the total outdoor air rate, including the sum of mechanical ventilation and infiltration divided by 

average number of occupants. That is why even ventilation strategies like ASHRAE 62-2001 and 

2×VR, in which the mechanically-provided OA was fixed, had substantial variability. At a 

glance, Figure 23 gives a sense of typical results and of the extent to which ventilation strategy 

changes affected outcomes. 
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Figure 23 Day-resolved histograms for five outcomes—total (mechanical + natural) ventilation rate (VR), 
PM2.5 and O3 indoor concentrations, and electricity and natural gas daily use intensities—for four 
ventilation strategies. In the background, the dark line with the numerical label indicates the median and the 
gray box extends from the 25th to 75th percentile of instances. 
 
 
 

4.3 Results and discussion  

4.3.1 Outcome loss magnitudes 

 Figure 24a shows the range of magnitude of losses for each outcome for the low, medium, 

and high reference values from Table 30, for the baseline ASHRAE 62-2001 ventilation strategy. 

It is immediately clear that the profitable IAQ outcomes generated much greater losses than did 

IAQ public health or energy ones. With medium parameter values, median ASHRAE 62-2001 

losses for work performance and excess absence were 0.69 and 0.28 $/occ/h, respectively, while 

PM2.5 and ozone losses were 0.12 and 0.02 $/occ/h, respectively, and electricity and natural gas 

losses were 0.04 and 0.00 $/occ/h, respectively. With high reference parameters, the contrast was 

even starker, with performance and absence losses rising to 3.81 and 0.63 $/occ/h, respectively, 

while no other component exceeded 0.24 $/occ/h.  
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 The much greater value of profitable IAQ impacts compared to energy ones is not a surprise, 

given the 1.5–2 order of magnitude difference already observed for the office sector (Ben-David 

et al., 2017; Fisk et al., 2012). The relative magnitude of public health impacts was smaller than 

has previously been suggested (Dutton et al., 2013). That difference is because of our focus on 

the working-age population that occupies offices, which have a lower mortality rate; the relative 

magnitude was similar to that observed in Chapter 3. 

 
 

 
Figure 24  (a) Magnitude of loss components for ASHRAE 62-2001 and (b) loss component changes when 
switching from ASHRAE 62-2001 to 2×VR. Magnitudes and changes are shown at low (L), medium (M), 
and high (H) parameter reference values. 
 
 
 
 Ultimately, the difference in losses produced by available strategies, not the absolute 

magnitude of losses themselves, drives outcome-based ventilation. Figure 24b shows the outcome 

loss changes when switching from the ASHRAE 62-2001 minimum rate to 2×VR, which equates 

to adding ~10 L/s/occ to the VR. The median loss changes, with medium-valued parameters, 

were −0.36 (LWP), −0.21 (LEA), 0.02 (LPM), 0.01 (LO3), 0.00 (Le), and 0.00 (Lg) $/occ/h. As 

expected, increasing ventilation always reduced losses related to productivity and sick leave, 

nearly always increased public health and natural gas consumption losses, and usually increased 

electricity consumption loss. Given this fact and the difference of component magnitudes, almost 

every set of user parameters would nearly always lead to a decision to increase ventilation. 
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 In fact, the only possible set of parameters under which the profitable benefits of increasing 

ventilation would be meaningfully opposed by the deleterious impacts on public health and 

energy is one in which IAQprofit parameters are quite low while IAQhealth or energy parameters, or 

both, are quite high. Figure 25 illustrates this fact with an enlargement of the 0–0.50 $/occ/h 

range, and IAQprofit differences negated for graphical comparison. With low-level parameters, the 

median IAQprofit was −0.09 $/occ/h. With high-level parameters, the medians were 0.05, 0.01, 

0.07 $/occ/h for IAQhealth, Energy, and their sum, respectively. 

 

 
Figure 25 Change in loss moving from ASHRAE 62-
2001 to 2×VR, shown on the left for the negation of 
IAQprofit at three levels, and then enlarged on the right 
to include low-valued IAQprofit and all three levels for 
IAQhealth, energy, and their sum. 

 
 
 

 To further illustrate the dominance of IAQprofit outcomes, consider the ratio of loss changes in 

IAQprofit to loss changes in the other two categories, again when adding ~10 L/s/occ to the 

ASHRAE 62-2001 minimum VR. IAQprofit and IAQhealth were always in conflict, and IAQprofit and 

Energy were in conflict (i.e., no free cooling) 72% of the time. In these tradeoff situations, when 

the initial VR was 15 L/s/occ or less and using all medium parameters, the reduced IAQprofit loss 

was, at the median, 22 times as large as the added IAQhealth loss, and 150 times as large as the 

added Energy loss. Even with the most ventilation-adverse settings—with low IAQprofit 
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parameters and high IAQhealth and energy parameters—the median reduction in IAQprofit loss was 

twice the added IAQhealth loss and five times the added energy loss.  

 

4.3.2 Decisive outcomes and categories 

 So far we have examined outcome losses for ASHRAE 62-2001 and 2×VR, and the 

differences between them, and seen the dominant role of profitable IAQ impacts. Here and in the 

following two sections, we expand analysis to the implications for decision-making when 

considering all four ventilation strategies: ASHRAE 62-2001, 2×VR, Econ, and DCV. Two sets 

of user preferences are employed for illustration. ‘Medium Parameters’ simply uses the medium 

reference values from Table 30 for all user parameters. ‘Public & Planet’ is the ventilation-

adverse parameter set just described: low reference values for profitable IAQ parameters (EPWP, 

EPWP, PWP, PEA), and high reference values for parameters related to IAQ public health (PPM, PO3) 

and energy (Pe, Pg). Since the influence of IAQprofit is so decisive, any parameter set other than 

‘Public & Planet’ would lead to nearly the same decisions as ‘Medium Parameters.’ 

 First, we examine which components were most influential on outcome-based ventilation. 

Figure 26 shows the percentage of occurrences where removing a particular outcome or category 

changed the outcome-based VR (among the options produced by the four existing strategies) by 

at least 1 L/s/occ. With Medium Parameters, the IAQprofit category was truly decisive. As long as 

either LWP or LEA was present, the decision usually remained the same: use the strategy with the 

highest VR. If both LWP and LEA were removed, the outcome-based VR nearly always changed. 

For Public & Planet, the tradeoffs were more complex. All outcomes were sometimes influential 

on their own at least 10% of the time, and LWP, LEA, and LPM changed the decision at least 25% of 

the time. Removing any of the three categories changed the decision at least one-third of the time. 



www.manaraa.com

 
 132 

 
Figure 26 Impact of loss function elements on 
ventilation strategy decision-making. Percentage of 
day instances where removing an outcome changed 
the outcome-based VR (among the options available 
by at least 1 L/s/occ. 

 

4.3.3 Outcome-based VRs and parameter sensitivity 

 To examine outcome-based VRs, we compiled daily VRs resulting from the four strategies, 

screening the set to only include the 580,013 days where there was at least one VR less than 15 

L/s/occ, one between 15 and 25 L/s/occ, and one above 25 L/s/occ. For each day, the VR that 

produced the lowest loss was recorded. Summary statistics and bin membership (Table 31) 

broadly indicate the magnitude of outcome-based VRs, even if they are not quite optimal 

outcome-based VRs (since the strategies did not intentionally minimize loss). The results 

indicated much greater ventilation than the 8.5 L/s/occ minimum prescribed by ASHRAE 62.1-

2016 for a typical office space, with medians near 30 L/s/occ for both illustrative user profiles. 

With Medium Parameters, there were literally no conditions or building features that drove the 

outcome-based VR lower than 25 L/s/occ. Even for Public & Planet, 57% of days had a VR > 25 

L/s/occ, and only 17% had a VR < 15 L/s/occ.  

 

0% 50% 100% 

Public                       
& Planet 

0% 50% 100% 

IAQ profit 
IAQ health 

Energy 
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PM 
O3 

elec 
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Table 31 Summary statistics and membership in one of 
three bins for outcome-based VRs over the office dataset. 

 
 
 
 
 While all days ended up in the highest VR bin with Medium Parameters, building 

characteristics and weather conditions did affect the outcome-based VR with the Public & Planet 

profile. Using a multinomial regression to rank these factors revealed three as critical: outdoor 

PM2.5 concentration, PM2.5 filter efficiency, and outdoor temperature. Figure 27 illustrates the 

influence of these parameters on Public & Planet decisions. Figure 27a shows the influence of the 

outdoor PM2.5 concentration and PM2.5 filter efficiency ηPM,mv (single pass in the mechanical 

ventilation airstream). When the outdoor PM2.5 concentration was below 8 µg/m3, regardless of 

filter efficiency, the lowest-loss VR was usually > 25 L/s/occ (76% of the time). But when 

outdoor PM2.5 was above 15 µg/m3 and filter efficiency was less than 40%, the lowest-loss VR 

was nearly always < 15 L/s/occ (82% of the time). Figure 27b shows bin membership by outdoor 

PM2.5 concentration and outdoor temperature Tout. When Tout was between about 10 and 30 °C and 

outdoor PM2.5 less than about 10 µg/m3, even the Public & Planet decision-maker nearly always 

selected strategies with VR > 25 L/s/occ (84% of the time). Only when outdoor temperatures 

were more extreme or outdoor PM concentration elevated were lower VRs selected. 

 

Median Mean < 15 
L/s/occ

15 – 25 
L/s/occ

> 25 
L/s/occ

Medium Parameters 32.5 43.1 0% 0% 100%
Public & Planet 26.4 29.0 17% 25% 57%

VR (L/s/occ) Percent of instances in VR bin
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Figure 27 For the Public & Planet user profile, lowest-loss VR bin membership as a function of (a) outdoor 
PM2.5 concentration and PM2.5 filter efficiency, and (b) outdoor PM2.5 concentration and outdoor 
temperature. 
 

4.3.4 Deciding among existing strategies 

 Consider using outcomes to select the best long-term strategy—over the entire year, rather 

than for a single day—from the options of ASHRAE 62-2001, 2×VR, Econ, and DCV. We 

examined this question for the two office types in each of the five climate categories defined by 

the Building America program (Baechler et al., 2010). (According to the 2012 Commercial 

Building Energy Consumption Survey (CBECS) (U.S. Energy Information Administration (EIA), 

2015a), 13% of U.S. offices are in hot-humid areas, 14% are in mixed-dry or hot-dry ones, 31% 

are in mixed-humid climates, 3% are in marine zones, and 39% are in cold or very cold climates.) 

First, Figure 28a shows the percentage of instances for which each strategy yielded the highest 

annual geometric mean VR. In most climate zones, the highest annual VR resulted from 2×VR, 

but it often came from economizing in Hot Dry and Mixed Dry climates (with high solar 

envelope gains compared to outdoor air enthalpy) and the mild Marine zone.  
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Figure 28 (a) frequency that each ventilation strategy achieved the highest 
annual VR, by climate category and office type; (b) frequency that each 
ventilation strategy had the lowest loss of the four options, for Medium 
Parameters and Public & Planet user profiles. 

 
 
 
 Figure 28b shows the percentage of instances that each ventilation strategy led to the lowest 

loss. With Medium Parameters, the percentages were very similar to those depicted in Figure 28a, 

meaning that most of the time the strategy that provided the most ventilation was the one that 

minimized loss—a result consistent with everything we have noted so far about the dominance of 

IAQprofit components. For Public & Planet, on the other hand, the lowest-loss strategies were 

much more varied. Simply doubling mechanical ventilation at all times (2×VR) was much less 

often favorable, and economizing was more often most favorable. In addition, both ASHRAE 62-

2001 and DCV sometimes minimized loss in the small-CAV building, despite never producing 

the highest VR. With Public & Planet, the tradeoffs between categories became apparent, and the 

outcome-based strategy selection depended on specific building characteristics and outdoor 

conditions, like outdoor pollution and filter efficiency. 
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4.3.5 Case studies 

 This section applies the loss framework to two variants of a small-CAV office building 

located in New York City. The office type is the same as already described, with building 

physical and efficiency parameters set at median, typical values. The only distinction between the 

two variants is that one has a typical particle filter (ηPM,mv = 0.2) and the other has a superior one 

(ηPM,mv = 0.7). For both case studies, natural infiltration was set at zero. The cases were simulated 

with constant design ventilation rates, or VRdes, from 5 to 50 L/s/occ in 5 L/s/occ intervals. In the 

absence of infiltration, the VR as already defined—the average outdoor air flow divided by the 

average occupancy—would be about 18% greater than VRdes, based on average occupancy. For 

example, a VRdes of 10 L/s/occ would yield a VR of 11.8 L/s/occ.  

 

4.3.5.1 Loss as a function of VR, on selected days 

 Figure 29 illustrates the losses associated with the six outcomes as a function of VRdes, with 

Medium Parameters in blue and Public & Planet in orange. For LWP and LEA, the relations depend 

only on VR and do not vary by day of year, building, or other conditions. For LPM, results are 

shown both for a low scenario (the superior filter case, with median outdoor PM2.5 pollution) and 

a high scenario (the typical filter case, with high outdoor PM2.5 concentration). LO3 is shown for a 

day with relatively high outdoor ozone levels. Le is shown for a typical summer day (August 14), 

Lg for a cold winter day (January 19), and the total energy, Lg + Le, is shown for a spring day 

(April 15). 

 

 
Figure 29 Loss component values as a function of VRdes with Medium Parameters (blue) or Public & Planet 
(orange) user profiles. Each panel is for a single day; see the text for more detail. 
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 In terms of the VRdes selected by an outcome-based approach, what matters in Figure 29 is 

not the value of loss components but their slopes as a function of VRdes. With Medium 

Parameters, it is clear on the strength of work performance impacts alone that the outcome-based 

VRdes would be about 45 L/s/occ, above which there is no lost work performance. No other 

outcome’s loss would ever be sufficient to counteract LWP fully, although LPM on a polluted day 

with a typical filter, or Lg on a cold winter day, could potentially lower the best VRdes a little. For 

the Public & Planet profile, on the other hand, LWP is zero above about 17 L/s/occ, and the 

influence of LEA is diminished (and, as always, zero above 30 L/s/occ). At the same time, the 

slopes of LPM, Le, Lg, and Le + Lg are all much greater. Therefore, the outcome-based VRdes would 

never exceed 30 L/s/occ except in free cooling situations, and could often be significantly lower. 

 

4.3.5.2 Loss as a function of VR over the year 

 Figure 30 shows the loss associated with the six outcomes over the year, for both user 

profiles, and at 5, 10, 20, 30, and 50 L/s/occ. For both profiles, it is clear that increasing 

ventilation above 5 L/s/occ generally reduced total loss. With Medium Parameters, every increase 

in VRdes reduced loss, and did so for every day of the year. For Public & Planet, VRdes increases 

up to between 20 and 30 L/s/occ reduced loss at most times. Increasing VRdes shifted the loss 

makeup from approximately equal parts energy, work performance, excess absenteeism, and 

PM2.5, to loss made up of energy and PM2.5. With the greater value accorded electricity and PM2.5, 

VRdes above about 10 L/s/occ increased total loss in the early summer, around June 1. This fact 

makes it clear that the ideal VRdes would not be constant for the year. 
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Figure 30 Loss magnitudes for six components over a year, for Medium Parameters and Public & Planet 
user profiles, each at five ventilation rates, for the case study building with a typical filter (ηPM,mv = 0.2). 
 
 
 
 Figure 31 is similar but for the variant with a superior PM filter that captures 70% of outdoor 

PM2.5 on a single pass. Compared to the office with a typical filter with an efficiency of 20%, the 

contribution of LPM to the total loss was much smaller. Indeed, even with the Public & Planet 

profile where PPM is based on the 95th percentile scientific estimate, the superior filter succeeds 

in nearly eliminating loss associated with PM2.5 exposure. This example illustrates a key point, 

which is that if high VR strategies are used in buildings to realize positive performance and 

absentee benefits, high efficiency filtration should accompany those strategies to mitigate indoor 

associated PM2.5 exposure. 
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Figure 31 Loss magnitudes for six components over a year, for Medium Parameters and Public & Planet 
user profiles, each at five ventilation rates, for the case study building with a superior filter (ηPM,mv = 
0.7). 
 
 
 

4.3.5.3 Outcome-based VRs over the year 

 Figure 32 illustrates the total loss (indicated by color) over the year as a function of VRdes, for 

both user profiles and both case study variants. With Medium Parameters (top row), for both filter 

conditions, loss decreased consistently from low to high VRdes. For the typical filter, the 

relationship between VRdes and L varied somewhat over the year, because of the greater loss 

associated with PM2.5 during a few high outdoor air pollution weeks; for the superior filter, it was 

remarkably consistent because, with PM2.5 effectively filtered, all impacts other than productivity 

and sick leave were comparatively marginal. For Public & Planet (bottom row), the relation 

between VRdes and L was both less strong and less one-directional, and ventilation was generally 

less able to produce large changes in the total loss magnitude. In particular, with the typical filter, 

there were times of the year with high loss that could not be fully reduced by changing VRdes. 

 The outcome-based VRdes—i.e., the VRdes that produced the lowest loss—is indicated by the 

black dots in Figure 32. With Medium Parameters, regardless of filter quality, it was either 45 or 

50 L/s/occ all year. With Public & Planet values, the outcome-based VRdes was 30 L/s/occ for 

large portions of summer, fall, and especially spring (for both filter conditions, but somewhat 
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more in the summer and fall with the superior filter). In the winter, the outcome-based VRdes was 

much lower, very rarely exceeding 15 L/s/occ with the typical filter or 20 L/s/occ with the 

superior filter. In all seasons, when the outcome-based VRdes was not 30 L/s/cc, it was most often 

10 or 15 L/s/occ with a typical filter (although values as low as 5 L/s/occ were observed) and 15 

or 20 L/s/occ with a superior filter (and almost never lower). For both filter conditions, the middle 

ground of 25 L/s/occ was almost never loss-minimal. 

 
 

 
Figure 32 Heat maps showing the total loss throughout the year for different design ventilation rates (VRdes) 
for two user profiles, each with a typical or a superior filter. Black dots indicate the outcome-based VRdes, 
i.e. the one that had lowest loss.  
 
 

 With Medium Parameters, simply setting the design VR to 50 L/s/occ and employing fixed 

ventilation all year would practically achieve minimal loss. However, for a profile similar to 

Public & Planet, there is no existing ventilation strategy that would have a similar annual profile 

to the one produced by intentionally minimizing loss in an outcome-based approach. 
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4.4 Conclusions 

 This chapter presented an outcome-based ventilation (OBV) framework for making decisions 

about ventilation strategies and rates in commercial buildings by combining IAQ and energy 

outcomes into a loss function. Minimizing loss is a way to optimize ventilation rates for a given 

decision-maker based on ventilation outcomes. A loss function was developed for U.S. offices, 

including six outcomes: occupant work performance and sick leave absenteeism (profitable IAQ 

outcomes), health risks from exposure to PM2.5 and ozone from outdoors (IAQ public health 

outcomes), and electricity and natural gas consumption, including climate change and air 

pollution externalities as desired (energy outcomes). For each outcome there were one or two 

user-defined parameters. Reasonable ranges were developed for all parameters based on scientific 

information, the research literature, and new analysis and Monte Carlo simulation. Low, medium, 

and high references values for user parameters were supplied. 

 The outcome-based ventilation framework was illustrated and explored with an existing 

dataset that statistically represented the U.S. office stock, as well as new case study simulations in 

a small office. For both, and through multiple types of analysis, profitable IAQ impacts of 

ventilation changes were shown to be much more valuable than public health or energy 

consumption impacts. For an intervention that added ~10 L/s/occ to the VR, with all medium 

parameter values, median changes in profitable IAQ losses were 20 times those associated with 

public health IAQ impacts and 200 times energy-related losses. 

 For medium user parameter values, and most other combinations, profitable IAQ impacts 

were so dominant that the outcome-based strategy was always the one that provided the most 

ventilation, up to 45–50 L/s/occ, regardless of the building, the time of year, or other conditions. 

The only exception was a user profile (Public & Planet) comprising very low (5th percentile) 

values for parameters related to profitable IAQ impacts and very high (95th percentile) values for 
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public health and energy impact parameters. Even so, case studies with a Public & Planet user 

profile resulted in outcome-based VRs that, at 30 L/s/occ for much of the year, far exceeded 

current standard minimum VRs. However, with the Public & Planet profile, outcome-based VRs 

varied during the year, sometimes as low as 5 L/s/occ, depending chiefly on outdoor pollution 

and temperature, and filter efficiency. No existing ventilation strategy captures these influences.  
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CHAPTER 5: VENTILATION AS OPTIMAL CONTROL PROBLEM: 
MINIMIZING DAILY LOSS AND ASSESSING  

THE POTENTIAL FOR PARETO IMPROVEMENTS 
5 VENTILATION AS OPTIMAL CONTROL PROBLEM: MINIMIZING DAILY LOSS AND ASSESSING THE POTENTIAL FOR PARETO 

IMPROVEMENTS 

 

Chapter abstract: This chapter applies the outcome-based ventilation (OBV) framework 

developed in Chapter 4 to real-time ventilation control to assess whether numerically optimizing 

ventilation can provide Pareto improvements over existing control methods. Optimizing outdoor 

airflow during a single day, it was hypothesized, could take advantage of weather, pollution, 

occupancy, and other transient dynamics. An effective ventilation rate, VReff, was defined based 

on the aggregate exposure of occupants to three types of contaminants. An optimal control 

problem was formulated, then transformed into a nonlinear optimization problem, which was 

solved by interior point methods. Results showed that, contrary to our hypothesis, modulating 

how ventilation is provided during a single day typically did not change energy use substantially 

compared to other control trajectories that had the same VReff. Optimization showed that a 

strategy with economizer and demand-controlled ventilation (EDCV) was very close to Pareto 

optimal at most times of the year, and annually saved 3–5% of HVAC energy costs compared to 

fixed ventilation. Optimized OBV only saved energy when the average outdoor temperature was 

between 20 and 30 °C and met particular conditions, like a morning that was significantly cooler 

than afternoon. The annual savings from switching from EDCV to optimized OBV were 2–3%. In 

terms of loss, the negative public health impact of bringing in so much OA was often greater than 

the energy savings. Neither time-of-use pricing nor any of the factors in a sensitivity analysis 

revealed opportunities in which optimizing ventilation within each day of the year saved more 

than 5% of annual HVAC energy costs.  
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5.1 Chapter introduction 

 This chapter applies the loss function framework developed in Chapter 4 to ventilation 

control. For a given set of building and user parameters, the loss function provides an objective 

that can be used to optimize ventilation. The following hypothesis was tested: numerically 

optimizing ventilation control to minimize loss can provide Pareto improvements over existing 

ventilation control methods, including not just a fixed ventilation rate (VR) but also already-

existing feedback-based ventilation control methods like economizing and demand-controlled 

ventilation (DCV). While the preceding chapter explored tradeoffs among indoor air quality, 

energy, and public health impacts and the implications for how ventilation rates should be 

determined, this chapter asks if there are ways that are more effective than current methods to 

deliver a given VR. In particular, the focus is on optimizing outdoor airflow during a single day, 

with the hypothesized benefits resulting from adjusting to take advantage of weather, pollution, 

occupancy, and other transient dynamics. Related work, outside the scope of this dissertation, 

takes up the question of optimally allocating a fixed ventilation energy budget over a yearlong 

time horizon, in light of longer-term seasonal energy and pollution dynamics. 

 In order to test whether dynamically modulating ventilation to minimize loss can provide 

significant benefits over a single day, a number of steps were required. Since the traditional 

definition of the ventilation rate is only appropriate for steady or near-steady outdoor air flows, a 

robust day-average VR metric needed to be defined. We formulated a concentration-based 

measure called the effective ventilation rate, VReff, to meet this need. The work performance and 

excess absenteeism relations were simplified with fits to closed form, single-equation expressions 

that can be used in an optimization problem without requiring mixed-integer programming. The 

optimal control problem was then formulated, with the dynamics of indoor air and energy 

processes acting as constraints on the system. 

 To solve the control problem, a method was employed to approximate energy demands as a 

function of outdoor airflow rate at the current and preceding timesteps. The indoor air process 
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system dynamics were discretized. Then the optimal control problem was recast as a constrained 

nonlinear optimization problem, of moderate to moderately-large size depending on the 

discretization timestep chosen. This problem was solved efficiently, within a few seconds, with 

interior point (IP) optimization algorithms. 

 Although we formulated the optimal control problem to include PM2.5 and ozone, the prices 

for them were set to zero for the optimizations presented here. This was principally to simplify 

analysis, because it is very difficult to keep track of multi-objective optimization problems with 

three objectives—and particularly difficult to use insightful graphical methods like Pareto curves. 

Throughout this chapter, when we refer to tradeoffs or Pareto improvements, we mean the 

tradeoffs between energy use and increasing ventilation to improve work performance and 

decrease absenteeism. 

 

5.2 Methods 

5.2.1 Terminology 

Subscripts 
bcd – generic building-emitted contaminant with ventilation-dependent emission rate 
bci – generic building-emitted contaminant with ventilation-independent emission rate 
e – electricity 
ea – excess absence 
exp – exposed concentration, an occupant-weighted average over the time horizon 
g – natural gas 
hc – generic human-emitted contaminant 
inf – infiltration or uncontrolled ventilation 
k – timestep index 
mv – mechanical ventilation 
nt – nighttime, indicating the period when the HVAC system is scheduled to be off 
o3 – ozone (O3, in ppb) 
oa – outdoor air, including mechanical ventilation and infiltration 
out – for PM2.5 and ozone, outdoor concentrations 
pm – particulate matter with aerodynamic diameter < 2.5 µg (PM2.5, in µg/m3) 
rec – recirculated supply air 
s – IAQ contaminant species index 
sa – supply air 
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wp – work performance 
 
Superscripts 

u – upper bound 
l – lower bound 

 
Building parameters and variables 
Θ – set of building and setting parameters 
f – air exchange rate, or volume-normalized airflow (h-1) 
µ – volumetric airflow (m3/h)  
I – floor area served by mechanical system (m2) 
ñî,^$K_ – rate of natural gas consumed by the heating coil (kW) 
ñ$,BCCL – rate electricity consumed by the cooling coil (kW) 
òCBB – number of occupants in control volume (occ) 
F – control volume served by mechanical system (m3) 
VReff – effective day-average ventilation rate metric (L/s/occ) 

 
Indoor air quality 
TCè – lumped ozone loss rate due to surface and air reactions (h-1) 
T`i – deposition rate for PM2.5 (h-1) 
å – filter removal efficiency (-) 
â – a concentration (µg/m3/h or ppb/h) 
â$∂ – equilibrium concentration for ventilation-dependent building-emitted contaminant 

(µg/m3) 
∑ – a contaminant loss term (h-1) 
∏^B – generation rate of human-emitted contaminant (µg/h/occ) 
∏]BM – generation rate of ventilation-independent building-emitted contaminant (µg/m2/occ) 
πê – time constant for ventilation-dependent building-emitted contaminant (h-1) 
ç – penetration factor (-) 
∫ – a contaminant source term (µg/m3/h or ppb/h) 

 
Loss function and optimization problem 
Ω – set of user preference parameters 
ê – loss ($/occ/h) 
k – a price ($/unit, where unit depends on the valued quantity) 
t0 –start of time horizon, when HVAC system turns on (h) 
tf – end of time horizon, when HVAC system turns off (h) 
∆ô – control timestep, also used for discretization (h) 
ò_% – number of timesteps in discretized problem (-) 
º – a time duration since an arbitrary initial time tinit (h) 
Y – state variables 
Ω – control variables 
æ – exogenous variables 
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5.2.2 From loss formulation to optimal control problem 

To test using the loss function to optimize ventilation, a single day’s operation was examined. 

Although an entire 24-hour period is implicated, since cyclical conditions are imposed to account 

for indoor air process overnight, the optimization time horizon is the period of HVAC system 

operation. This period starts at an initial time t0 and ends at final time tf, and this operation period 

is fixed. 

 

5.2.2.1 Assumptions and single-zone IAQ modeling 

 This investigation regards the space conditioned and ventilated by an HVAC system as a 

single zone. This avoids the need to model distribution systems and helps limit the dimensionality 

of the problem, which are useful simplifications in order to assess feasibility and benefits. Of 

course, even a large multizone building can be treated like a single zone by lumping together the 

zones served by a single HVAC system. We have not formally assessed performance in 

multizone buildings (not even in simulation), but would hypothesize that these methods would be 

reasonably applicable to ones with stable occupancy and spatially similar loads, but will probably 

require modification to be applied to multizone systems with diversity of conditioning loads and 

particularly with diversity and time-variability of ventilation loads. 

 For the single zone, the flow of outdoor air (oa) is the sum of mechanical ventilation (mv) 

and infiltration (inf) flows, all denoted by µ and expressed in m3/h:  

µCK = µij + µMDH (39) 

The flows are modeled as balanced, meaning exfiltration equals infiltration, and also that exhaust 

flows equal mechanical ventilation flows, so that the flow of air recirculated through the HVAC 

system (rec) is the supply air (sa) flow minus the mechanical ventilation flow, or 
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µ#$B = µ%K − µij (40) 

 The air exchange rate, defined for all subscripts (fCK, fij, fMDH, f%K, and f#$B), is the flow 

divided by the space volume V (m3) 

f = µ F (41) 

 Indoor air pollutants are modeled with the differential equation 

±â
±ô = ∫ − ∑â (42) 

where C (µg/m3) is a concentration, S (µg/m3/h) a volume-normalized source strength, and D a 

decay rate (h-1). (In reactor modeling the decay rate is usually called a loss rate, but here D is used 

because “loss” already has another meaning in this work.) 

 For periods in which sources and decays are constant or can be time-averaged, the 

concentration at time t after some initial time tinit is given by the analytical solution to Equation 

(42) 

	â ô = â ôMDM_ ¢wø¿ +
∫
∑ 1 − ¢wø¿  (43) 

where º = ô − ôMDM_. This fact is used to calculate concentration trajectories during nighttime 

when the HVAC system is not operating. 

 Five indoor air pollutants are modeled. Although we do not preclude the possibility that some 

of these, or related species, could one day be measured in real-time and the measurements 

integrated with data fusion techniques, the models are expected in most cases to be the only 

information about these pollutants. Indeed, three of the pollutants are fictitious, and intended to 

represent three types of volatile organic compound (VOC) pollutants with indoor sources. These 

are a human-emitted compound (hc), emitted at a constant rate by each occupant present, and 

representing a bioeffluent; a building-emitted compound with emissions independent of the 
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indoor-outdoor air exchange rate (bci); and a building-emitted compound for which effective 

emissions are dependent on the air exchange rate (bcd). The final two pollutants are PM2.5 (pm) 

and ozone (o3), exposure to which is directly included in the loss function. Source and decay 

terms for all five are listed in Table 32. 

 

Table 32 Modeled contaminant species and source and decay terms. Time-varying quantities are explicitly 
indicated.  
Species S D Eq. 

â^B 
∏^B
F òCBB ô  fCK(ô) (44) 

â]BM 
∏]BM
F I fCK(ô) (45) 

â]BE πêâ$∂ fCK ô + πê (46) 

â`i 1 − å`i,ij fij(ô) + ç`ifMDH(ô) â`i,CÖ_(ô) fCK(ô) + å`i,#$Bf#$B(ô) + T`i (47) 

âCè 1 − åCè fij(ô) + çCèfMDH(ô) âCè,CÖ_(ô) fCK(ô) + åCèf#$B(ô) + TCè (48) 

 

 

 For each species s, the occupant-weighted “exposed concentration” is defined by the 

weighted integration from t0 to tf 

â¡,$ï` =
òCBB(ô)â¡(ô)±ô

õú
õù

òCBB(ô)±ô
õú
õù

=
òCBB(ô)â¡(ô)±ô

õú
õù

óC^
 (49) 

where Nocc is the number of occupants present and óC^ is the number of occupant hours (occ·h) 

during the time horizon. (For example, 10 occupants each working 8 hours would be óC^ = 80 

occ·h.) For PM2.5 and ozone, the occupant-weighted exposed concentration values are used 

directly in the loss function, while for the three fictional VOCs they are used to calculate the day-

average effective ventilation rate VReff. 
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5.2.2.2 The effective ventilation rate, VReff 

 The ventilation rate is the outdoor airflow per person. It has traditionally been defined for 

steady conditions, for example in the sense that ASHRAE 62.1 provides tables of minimum VR 

to be provided constantly. For relatively smooth ventilation adjustments, like DCV and 

economizing, the VR can be calculated using time averages. However, adapting the VR to 

entirely arbitrary dynamic outdoor air modulation presents problems. To see why, consider the 

two possible definitions. One could define the VR instantaneously as the current outdoor flow 

divided by the current number of occupants, and then average that value over the day. In that 

case, the instantaneous VR would be very high when few occupants were present, and infinite 

when the space was unoccupied. Any ad hoc method for addressing this problem would need to 

determine how to weight outdoor airflow during unoccupied periods, a question to which there 

does not seem to be a single appropriate answer. The other option is to take the average outdoor 

airflow over the day and divide it by the average number of occupants over the day. While this 

method would be more robust than the first, it completely disregards the timing of ventilation. For 

example, increasing ventilation in the fully occupied middle of the day would have an equal 

effect on the metric as increasing it in the evening after most occupants had left, although 

obviously the latter would provide almost no practical benefit. 

 These types of flaws would be exploited immediately by optimization routines, and so a 

metric more robust to numerical tricks was needed. Our answer was the effective ventilation rate 

VReff, based the occupant-weighted time-averaged concentration of indoor VOCs. The more 

effective the strategy at reducing these concentrations experienced by occupants, the higher VReff. 

To represent “indoor VOCs” three fictional contaminants were defined: a human-emitted 

compound (hc, for human contaminant) representing a bioeffluent, a building-emitted compound 

with air-exchange-independent emissions (bci, for building contaminant independent), and the 

building-emitted compound with air-exchange-dependent emissions (bcd, for building 

contaminant dependent). The idea is simple: for each contaminant, calculate the steady state (or 
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time-averaged) VR that would produce the same exposed concentration, or occupant-weighted 

time-averaged concentration. For example, for the human-emitted contaminant alone, the 

equivalent effective VR is 

VR^B =
∏^B

3.6 ∙ â^B,$ï`
 (50) 

where Ghc is a per-occupant emission rate in µg/h/occ. Similarly, for the building-emitted 

contaminant with independent emissions, the equivalent effective VR is 

VR]BM =
∏]BMI

3.6 ∙ â]BM,$ï` ∙ òCBB,Kj$
 (51) 

where A is the area of the space (m2) and òCBB,Kj$ =
x
¬√ƒ

òCBB(ô)òCBB(ô)±ô
õú
õù

 is the occupant-

weighted average occupancy. For the building-emitted contaminant with dependent emissions, 

the equivalent effective VR is 

VR]BE =
πê â$∂ − â]BE,$ï` F
3.6 ∙ â]BE,$ï` ∙ òCBB,Kj$

 (52) 

 The effective ventilation rate, VReff, was a simple average of the metric determined by the 

human- and building-emitted species, with the latter, VRbuild, being a simple average of the 

independent and dependent emission rate contaminants, so that 

VR$HH = 0.50 ∙ VR^B + 0.25 ∙ VR]BM + 0.25 ∙ VR]BE (53) 

 As a rule, the contribution from VRhc tends to increase VReff somewhat, since the lag time for 

bioeffluents to reach steady state increases the apparent ventilation rate. The contributions from 

VRbci acts to decrease VReff, since buildup of independent emissions overnight take some time to 

be diluted in the morning, decreasing the apparent ventilation rate. The value of VRbcd is typically 

quite close to the final value of VReff.  
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5.2.2.3 Simplified fits for lost work performance and excess absence rate 

 Chapter 4 presented models for calculating lost work performance (LWP) and the excess 

absence rate (EAR), both as a function of ventilation. However, both models required conditional 

switching depending on the VR value, and the LWP model required multiple calculation steps. In 

order to facilitate optimization, simplified models with a single, universally valid were fit for both 

outcomes. In both cases, it was decided to fit the models over a VR domain with a lower limit of 

5 L/s/occ (the lower limit for EAR) and no upper limit. In optimizations, the VR is constrained to 

be above 5 L/s/occ to avoid applying the model outside the domain.  

 After significant trial and error and formal experimentation, it was determined that LWP can 

be estimated as 

LWP = exp ≈U + ≈x ⋅ VR + ≈Å ⋅ VRÅ + ≈∆ ⋅ VR∆  (54) 

where 

≈V = ∞VU + ∞VxWJ` + ∞VÅWJ`Å + ∞VèWJ`è (55) 

where zwp is the standard normal variate corresponding to the work performance estimate 

percentile EPWP, as in Chapter 4, and the a coefficients are listed in Table 33. 

 

Table 33 Coefficients for lost work performance (LWP) simplified model 
i ai0 ai1 ai2 ai3 

0 -2.7104E+00 2.9882E-01 5.7120E-02 -2.2533E-02 

1 -1.0934E-01 5.7993E-02 -3.2264E-02 6.2251E-03 

2 1.3686E-03 -4.2509E-04 3.7571E-04 -9.3105E-05 

4 -7.0671E-07 6.7187E-08 -6.4313E-08 1.6321E-08 
 

 Similarly, the excess absence rate can be estimated as follows 

�$K = exp ≈0 + ≈1 ⋅ VR + ≈2 ⋅ VR2 + ≈4 ⋅ VR4  (56) 
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where 

≈V = ∞VU + ∞VxW$K + ∞VÅW$KÅ + ∞VèW$Kè (57) 

where zea is the standard normal variate corresponding to the absence rate estimate percentile 

EPEA, as in Chapter 4, and the a coefficients are listed in Table 34. Note that while the forms of 

the equations for LWP and rea are the same, and the coefficient names are reused, the coefficient 

values in Table 33 and Table 34 should not be confused. 

 

Table 34 Coefficients for excess absence rate rea simplified model 
i ai0 ai1 ai2 ai3 

0 -3.7671E+00 2.6210E-01 -4.5102E-02 7.8335E-03 
1 -9.0902E-02 -4.0111E-03 -2.9685E-04 2.4554E-05 
2 1.9395E-03 -1.3030E-04 3.4550E-06 1.9576E-06 
4 -3.6894E-06 1.1644E-07 1.3104E-09 -1.5154E-09 

 
 

 For both LWP and rea, the R2 of all fits for all z values between –2 and 2 were 0.9996 or 

greater. Figure 33 illustrates fits for LWP for five zWP values. 

 
Figure 33 Fits for the simplified model for LWP for 
five zWP values, from the top down: 2, 1, 0, –1, and –
2. The o’s result from the original expressions 
developed in Chapter 4, while the lines show the 
simplified fits introduced here. 
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 It is also worth noting that, while Equations (54) and (55) or (56) and (57) look complicated 

and multivariate, the values of zwp and zea are not adjusted within the optimization problem. Their 

values are set by a user decision at the outset, and once fixed, Equations (54) and (56) are 

functions only of the VR. 

 

5.2.2.4 Loss function formulation 

 The loss function remains as introduced in Chapter 4, except that the prices associated with 

LWP and excess absenteeism are fixed at the same value of an hour of labor, called Pwage, and gas 

and electricity usage are expressed in their transient forms. Total loss is 

              ê = êJ` + ê$K + ê`i + êCè + êî,^$K_ + ê$,BCCL 

= kJKî$ ∙ LWP + kJKî$ ∙ �$K + k̀ iâ`i,$ï` + kCèâCè,$ï` +
1
óC^

kîñî,^$K_ ô ±ô
õr

õù

+
1
óC^

k$(ô)ñ$,BCCL(ô) ±ô
õr

õù
 

(58) 

 

5.2.2.5 Optimal control problem 

 For the single zone problem, we work with a single control variable u, which is the total 

outdoor airflow. The state variables x in this case are the indoor concentrations as well as the 

energy consumed by the heating and cooling system; supply air is constant in the current 

formulation, and therefore fan energy is not affected by ventilation control. All the state variables 

depend on the control variable as well as exogenous variables w that include occupancy, supply 

air and infiltration flows, and outdoor pollutant concentrations. Outdoor weather variables are not 

included in the exogenous variables because, in the current approach, they are embedded in the 

equations for building thermal dynamics that relate energy consumption to outdoor airflow. In 

summary, these definitions are 
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Ω ô = µCK ô  

Y = â^B, â]BM, â]BE, â`i, âCè, ñî,^$K_, ñ$,BCCL  

æ = òCBB, µ%K, µMDH, â`i,CÖ_, âCè,CÖ_  

(59) 

  

 The optimal control problem can then be formulated as 

 minimize
» õ ,õ∈ õù,õr

ê  

subject	to Ã Y ô , Y ô , Ω ô , æ ô , Ω, Θ = 0,	ô ∈ ôU, ôH   

subject	to ÃU Y ôU , Y ôH = 0   

subject	to µCKL ≤ µCK ô ≤ µCKÖ ,	ô ∈ ôU, ôH  

subject	to 0 ≤ ñî,^$K_(ô) ≤ ñî,^$K_Ö ,	ô ∈ ôU, ôH    

subject	to 0 ≤ ñ$,BCCL(ô) ≤ ñ$,BCCLÖ ,	ô ∈ ôU, ôH  

(60) 

 

where the first condition subjects the solution to the dynamics of the problem expressed by some 

set of functions F. These functions include the dynamics expressed for the five indoor air 

pollutants in Equations (42) and (44)–(48), as well as the dynamics of the building, mechanical 

system, and weather that relate µCK to ñî,^$K_ and ñ$,BCCL. F is also conditioned on the two 

parameter sets Ω, Θ. Ω includes user parameters such as the EPs for work performance and excess 

absence, Pwage, Ppm, Po3, Pe, and Pg. Θ includes building parameters like the space volume and 

area, and emission rates and other IAQ constants. 

 The second condition in Equation (60) expresses initial conditions and final conditions. As 

part of these conditions, we also impose cyclical conditions on indoor air pollutants. Without 

setting constraints on the contaminant concentrations at ton, an optimization would set all of them 

at zero. However, concentrations of all species (possibly excepting the purely human-emitted 
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contaminant) are unlikely to be zero at the beginning of system operation, and for building 

emitted contaminants nighttime emissions can be a serious source of exposure. We therefore 

impose the constraint that the concentration when the system turns on must be consistent with the 

solution of the governing differential equation, the concentration when the system turned off, and 

the time-averaged sources and losses during the night. Thus, for each species Œ ∈

hc, bci, bcd, pm, o3  

â¡ ôU = â¡ ôH ¢wøœ,–®¿–® +
∫¡,D_
∑¡,D_

1 − ¢wøœ,–®¿–®  (61) 

where “nt” indicates nighttime, the nighttime duration is ºD_ = ôU + 24 − ôH, and ∫¡,D_ and ∑¡,D_ 

are the time-averaged sources and decays of species s during the nighttime period, which can be 

seen in detail in the Appendix to this chapter. The third condition in Equation (60) establishes 

bounds at each timestep on the control variable µCK cannot be less than a lower bound or greater 

than an upper bound at each timestep. These are established by, on the low end, infiltration, and, 

on the high end, the HVAC system’s supply airflow plus infiltration. The fourth and fifth 

conditions place limits on the heating and cooling energy consumption that are imposed by the 

system capacity, which can vary by timestep depending on loads and outdoor air conditions. 

 Additional constraints could be imposed to limit indoor concentrations or energy use. We 

conducted some exploration of these ideas, in order to require solutions to provide better air 

quality or use less energy than some reference strategy, for example. However, the principal 

purpose of this investigation is to establish Pareto curves for tradeoffs, and so there is at present 

no need to establish artificial cutoffs of the solution space. It is sufficient to modulate prices and 

then view where the imposition of a cutoff would dictate that a ventilation strategy would operate, 

i.e., where the Pareto curve crosses the cutoff boundary. 
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5.2.3 From optimal control problem to nonlinear optimization problem and solution 

 There are numerous options for solving optimal control problems (Biegler & Zavala, 2009; 

Dong & Lam, 2014; Ma, Qin, Salsbury, & Xu, 2012; Mayne, 2014; Wetter, Bonvini, & Nouidui, 

2016). Here we adopt perhaps the most straightforward, discretizing system dynamics and other 

governing equations, and transforming these into a constrained nonlinear optimization problem. 

In this approach, both the control variables and the state variables become decision variables, 

which is necessary to allow system dynamics to be expressed as constraints. For example, a 

pollutant’s concentration is not a control variable in the original optimal control problem, but the 

species’ concentration at timestep k becomes a decision variable in the nonlinear optimization 

problem, which is constrained by discrete dynamic relations to the control and exogenous 

variables and the concentrations at timesteps k – 1 and k + 1. 

 Only timesteps within the period when the HVAC system is on are included. The only 

nighttime information is coded in the nighttime source and decay term parameters for 

contaminants. These timesteps are indexed from k = 1… Nts, where ò_% =
õrwõù
∆õ

, where ∆ô is the 

timestep length in hours. A slightly different convention is used for flows and energy than is used 

concentrations. For µCK, ñî,^$K_, and ñ$,BCCL, there are Nts values, each representing the held or 

average value for the duration of a timestep. Thus, for example, µCK,x represents the constant 

value of outdoor airflow from time ôU to time ôU + ∆ô. For indoor air concentrations, however, 

there are Nts + 1 instantaneous timeslice values. Timeslices are indexed from 0…Nts, so that, for 

example, timestep 1 is the duration between times ôU and ôx, and in general timestep k is the 

duration between times ô—wx and ô—, where ô— = ôU + π∆ô, and ô“®” = ôU + ò_%∆ô = ôH. In this 

work, a constant-length timestep ∆ô (h) has been used for simplicity; a variable-length option 

could potentially improve performance in a practical implementation. 
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5.2.3.1 Polynomial fits for energy use as a function of outdoor airflow 

 Independent of the formulation of the optimal control problem, or the decision of how to 

approach solving it, is the question of modeling building and HVAC system dynamics. For this 

work, an approach was developed that executed a detailed building simulation with several 

possible µCK at each timestep, then fit response curves for each timestep for the resulting values 

of ñî,^$K_ and ñ$,BCCL. In this case, the detailed simulation tool was EnergyPlus and the case study 

model was essentially the same as the small-CAV model described in Chapters 2, 3, and 4. In this 

section, we describe the basic approach. In fact, the final equations were slightly different, 

because of a correction to account for highly dynamic ventilation, which is described in the next 

section. 

 Using an initial EnergyPlus simulation, we fit polynomial curves for electricity and natural 

gas use rates at each timestep k (i.e., the average consumption rate from time tk-1 to time tk),  

ñî,^$K_,— =
∞î,U,— + ∞î,x,—fCK,— + ∞î,Å,— fCK,—

Å

1 + exp −π%,î,— fCK,— − fB,î,—
 (62) 

and 

ñ$,BCCL,— =
∞$,U,— + ∞$,x,—fCK,— + ∞$,Å,— fCK,—

Å

1 + exp −π%,$,— fCK,— − fB,$,—
 (63) 

 For better scaling, these models were fit with the air exchange rate fCK as the independent 

variable. The a values, ks, and fB are parameters fit at each timestep. The a’s are polynomial 

coefficients. The denominator is a logistic function that splits the domain into an “active region” 

and zero-valued “inactive region” while maintaining the function twice-continuously 

differentiable everywhere. The parameter ks controls the sharpness of the transition between the 

two regions, and its sign also determines whether the active region is below the cutoff fB or above 

it. The equations are flexible enough to fit any type of relation of energy use to ventilation. If 
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energy use increases with ventilation, ks is positive, so that if fCK is less than fB the denominator 

will be large and the estimate will be effectively zero, while if fCK is greater than fB the 

denominator will approach unity and the estimate will follow the polynomial equation in the 

numerator. If energy use decreases with ventilation, as in free cooling, ks is negative, so that if fCK 

is less than fB the denominator approaches unity and the polynomial equation in the numerator 

will provide the estimate, while if fCK is greater than fB the denominator will become large and 

the estimate will indicate that increased ventilation cannot save more energy. 

 The routine that fit the models also determined upper and lower limits for fCK. Generally, 

lower limits were established by infiltration in the absence of mechanical ventilation, below 

which the total outdoor air delivery cannot fall. The upper limit was a system limit, the lesser of 

the physical capacity of the HVAC system’s fan or a maximum flow determined to safely keep 

the heating or cooling coil within its maximum capacity for a given timestep. These limits were 

translated to the box constraints µCK,—L  and µCK,—Ö  for the optimization problem at each timestep. 

 Figure 34 illustrates heating natural gas consumption fits for four hourly timesteps on a cold 

day. The infeasible regions below the lower fCK limit and above the upper fCK limit are shown in 

grey. In the morning, the slope of energy use rate per outdoor air flow was steep, and the domain 

constrained below about 2 h-1. By midday, the slope was gentler as the energy required to heat 

outdoor air decreased, and much higher air exchanges could be achieved without exceeding the 

coil’s heating capacity. By the evening, as outdoor temperature dropped, that process had begun 

to reverse. 
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Figure 34 Heating energy fits for four hourly timesteps on a cold day. The setup routine generates the fit 
and also determines the lower limit of infiltration and upper limit of system capacity, indicated here by 
infeasible grey regions. 
 

 Similarly, Figure 35 illustrates cooling coil electricity consumption fits for four hourly 

timesteps on a hot summer day. The trajectory of slope and domain changes over the day are the 

opposite of winter. In the morning, ventilation requires less energy, meaning a flatter slope and 

wider feasible domain. By early afternoon, the maximum air exchange barely exceeds 1 h-1 and 

the electricity use slope is steeper. The process reverses by the evening, when more ventilation 

again becomes feasible and less costly. 
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Figure 35 Cooling energy consumption fits on a hot day for four hourly timesteps, with infeasible gray 
regions indicating limits on outdoor air that can be delivered. 
 
 
 
 Figure 36 and Figure 37 illustrate for a spring day where, depending on the outdoor air flows, 

either heating or cooling, or potentially both, might be required. Figure 36 shows heating natural 

gas consumption as a function of fCK. Earlier in the morning, any air exchange above about 1 h-1 

would call for heating, but lower ventilation could avoid it. By late morning, the cutoff point 

between the active and inactive heating regions moved to nearly 4 h-1. By midday, no air 

exchange would require heating. On the other hand, there are no cooling implications in the 

morning or evening, but Figure 37 shows that in mid-afternoon, cooling would be required if 

ventilation is too low. For example, from 1–2 p.m., the domain was divided into the active region 

below 1 h-1 where mechanical cooling was required, and the inactive region above 1 h-1 where 

free cooling met the full conditioning load and therefore had not impact on electricity 

consumption. By 4–5 p.m., the cutoff point between the regions had moved up to about 1.5 h-1. 
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Figure 36 and Figure 37 illustrate how the fits of the form given in Equations (62) and (63) 

flexibly account for multiple energy impact scenarios. In the morning, there was no energy 

required below an air exchange cutoff; above the cutoff, heating energy was consumed. In the 

afternoon, there was no energy required above an air exchange cutoff; below the cutoff free 

cooling was wasted and mechanical cooling energy was consumed. 

 

  
Figure 36 Heating natural gas use fits for two hourly timesteps on a mild spring day. 
 
 

 
Figure 37 Cooling electricity fits for two hourly timesteps on the same mild day as the previous figure. 
 
 
 

5.2.3.2 Energy polynomial fit corrector for dynamics  

 The form of Equations (62) and (63) is sound, and as the figures in the preceding section 

show, it can fit constant-flow ventilation very well. That is, all of the preceding illustrations are 

based on each fCK having also been applied at the previous timestep. But, in a dynamic 
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optimization problem, flows may change substantially between two consecutive timesteps, and 

these changes can introduce significant modeling errors. This was especially true at times when 

some values of fCK at the preceding timestep allowed the indoor temperature to float in the 

setpoint deadband but other values caused the indoor temperature to reach one of the setpoints. In 

such cases, the value of fCK,—wx affected both the thermal energy stored in the air and structure 

during timestep k – 1 and the temperature at the beginning of timestep k, and therefore affected 

the relation between fCK,— and energy consumption. 

 To address this problem, we introduced the trajectory-corrected flow ‘CK,— to replace the 

actual timesteps outdoor flow µCK,—. “Corrected” is with respect to the energy model, i.e., it 

means adjusted based on previous timesteps to maximize the accuracy of the energy model. The 

corrected flow is a weighted average of flows at all other timesteps: 

‘CK,— = ’—°µCK,°

“®”

°÷x

 (64) 

where ’—° is a coefficient that expresses the specific influence of the flow µCK,° at timestep j on 

the corrected flow ‘CK,—. The ’ coefficients were calculated for each timestep in a second step 

after initial models were fit. In this step, a series of sinusoidal and highly intermittent outdoor 

airflow trajectories (e.g., alternating every hour or two hours between maximum and minimum 

possible flows) were simulated in EnergyPlus and used as training data to determine the ’ 

coefficients. 

 The final equations for energy use were simply a matter of substituting ‘CK,— for µCK,°. Since 

the energy equations were formulated in terms fCK rather than µCK, we included the inverse 

volume ◊ (m-3),  

◊ = 	1 F ⟹ 	f = ◊µ (65) 



www.manaraa.com

 
 

 

164 

to help avoid nested fractions when converting between air exchange and airflows. With the 

corrector in place, the energy equations can be written as 

ñî,^$K_,— =
∞î,U,— + ∞î,x,—◊‘CK,— + ∞î,Å,— ◊‘CK,—

Å

1 + exp −π%,î,— ◊‘CK,— − fB,î,—
 (66) 

and 

ñ$,BCCL,— =
∞$,U,— + ∞$,x,—◊‘CK,— + ∞$,Å,— ◊‘CK,—

Å

1 + exp −π%,$,— ◊‘CK,— − fB,$,—
	 (67) 

 With the corrected airflows, the R2 value of the fits to the highly intermittent EnergyPlus 

training data was nearly always greater than 0.95, and typically was 0.99 or 1. 

 

5.2.3.3 Discretizing IAQ equations  

 Driving forces for indoor air process are timestep averages, collectively denoted Sk for 

sources and Dk for decay terms during the k-th timestep. Concentrations, however, are tracked as 

instantaneous timeslices, with the notation â ô—  indicating the concentration at time ô—, that is, at 

the end of the k-th timestep. Given this, Equation (42) can be discretized as 

â ô— − â ô—wx
∆ô ≈ ∫— − ∑— ⋅

â ô— + â ô—wx
2  (68) 

where the left-hand side is an incremental approximation of the derivative and ¶ õŸ ⁄¶ õŸ¤‹
Å

 

approximates the average concentration during timestep k.  

 After some rearranging, this relation yields a formula for calculating instantaneous 

concentration values forward in time, 

â ô— =
2∫—∆ô + 2 − ∑—∆ô â ô—wx

2 + ∑—∆ô
 (69) 
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 For each species, there are Nts + 1 variables â ôU , â ôx , …, â ôH . There are an equal 

number of constraints, with Equation (69) providing Nts constraints, and Equation (61), relating 

the concentration at t0 and tf based on nighttime source and decay terms, providing the final 

constraint. All that remains is to substitute in the particular source and decay terms particular to 

each compound, per Table 32 and Equations (44) – (48). 

  The discrete version of Equation (49) is used to calculate exposed concentration, 

â$ï` =
â ô—wx + â ô—

2 òCBB,—∆ô
“®”
—÷x

óC^
 (70) 

where the discrete version of óC^ is 

óC^ = òCBB,—
“®”

—÷x
∆ô (71) 

 Similarly, the discrete version of the occupant-weighted average occupancy, used in the VR 

metric calculations, is  

òCBB,Kj$ =
òCBB,— ∙ òCBB,—

“®”
—÷x

òCBB,—
“®”
—÷x

 (72) 

 

5.2.3.4 Forward versions of equality constraint equations 

 Table 35 lists forward versions of all process dynamics equations. It combines the polynomial 

fits for energy use, the discretized indoor air equations with appropriate source and decay terms 

substituted, and the nighttime relation for the cyclical requirement from Equation (61). Table 36 

lists the specific source and decay terms to be used for nighttime (nt) calculations. 
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Table 35 Forward versions of equations that define equality constraints in the nonlinear optimization problem. 

Equation Description # 

!",$%&',( =
*",+,( + *",-,(./0&,( + *",1,( ./0&,(

1

1 + exp −78,",( ./0&,( − 9:,",(
 Natural gas use as 

function of OA flow ;'8 

!%,:00<,( =
*%,+,( + *%,-,(./0&,( + *%,1,( ./0&,(

1

1 + exp −78,%,( ./0&,( − 9:,%,(
 Electricity use as 

function of OA flow ;'8 

=$: >( =
2.@$:;0::,(∆> + 2 − ./0&,(∆> =$: >(B-

2 + ./0&,(∆>
 =$: dynamics during 

each timestep ;'8 

=$: >+ = =$: >CDE F
BGHI,JDKJD +

L$:,M'
N$:,M'

1 − FBGHI,JDKJD  Cyclical         
requirement 1 

=O:P >( =
2.@O:PQ∆> + 2 − ./0&,(∆> =O:P >(B-

2 + ./0&,(∆>
 =O:P dynamics during 

each timestep ;'8 

=O:P >+ = =O:P >CDE F
BGRIS,JDKJD +

LO:P,M'
NO:P,M'

1 − FBGRIS,JDKJD  Cyclical         
requirement 1 

=O:T >( =
27U=%V∆> + 2 − ./0&,( + 7U ∆> =O:T >(B-

2 + ./0&,( + 7U ∆>
 =O:T dynamics during 

each timestep ;'8 

=O:T >+ = =O:T >CDE F
BGRIW,JDKJD +

LO:T,M'
NO:T,M'

1 − FBGRIW,JDKJD  Cyclical         
requirement 1 

=XY >(

=
2 1 − ZXY,Y[ . /0&,( − /PM\,( + ]XY./PM\,( =XY,0^',(∆> + 2 − ./0&,( + ZXY,_%:. /8&,( − /0&,( − /PM\,( + `XY ∆> =XY >(B-

2 + ./0&,( + ZXY,_%:. /8&,( − /0&,( − /PM\,( + `XY ∆>
 

 

=XY dynamics during 
each timestep 

;'8 
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=XY >+ = =XY >CDE F
BGab,JDKJD +

LXY,M'
NXY,M'

1 − FBGab,JDKJD  Cyclical         
requirement 1 

=0c >( =
2 1 − Z0c . /0&,( − /PM\,( + ]0c./PM\,( =0c,0^',(∆> + 2 − ./0&,( + Z0c. /8&,( − /0&,( − /PM\,( + `0c ∆> =0c >(B-

2 + ./0&,( + Z0c. /8&,( − /0&,( − /PM\,( + `0c ∆>
 =0c dynamics during 

each timestep ;'8 

=0c >+ = =0c >CDE F
BGde,JDKJD +

L0c,M'
N0c,M'

1 − FBGde,JDKJD  Cyclical         
requirement 1 

=$:,%fX =
=$: >(B- + =$: >(

2 ;0::,(∆>
CDE
(g-

h0$
 

Occupant-weighted         
averaging 1 

=O:P,%fX =
=O:P >(B- + =O:P >(

2 ;0::,(
CDE
(g- ∆>

h0$
 

Occupant-weighted                
averaging 1 

=O:T,%fX =
=O:T >(B- + =O:T >(

2 ;0::,(∆>
CDE
(g-

h0$
 

Occupant-weighted           
averaging 1 

=XY,%fX =
=XY >(B- + =XY >(

2 ;0::,(∆>
CDE
(g-

h0$
 

Occupant-weighted         
averaging 1 

=0c,%fX =
=0c >(B- + =0c >(

2 ;0::,(∆>
CDE
(g-

h0$
 

Occupant-weighted           
averaging 1 

VR$: =
@$:

3.6 ∙ =$:,%fX
 Definition 1 

VRO:P =
@O:PA

3.6 ∙ =O:P,%fX ∙ ;0::,&[%
 Definition 1 
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VRO:T =
7U =%V − =O:T,%fX p
3.6 ∙ =O:T,%fX ∙ ;0::,&[%

 Definition 1 

VR = 0.50 ∙ VR$: + 0.25 ∙ VRO:P + 0.25 ∙ VRO:T Definition 1 

s0&,( = t(u/0&,u

CDE

ug-

 Definition ;'8 

 

 

Table 36 Nighttime sources and decay terms for five indoor air pollutants 
C vwx ywx Eq. 

=$: 0 9PM\(>	mod	24)Å>
ÇÉÑ1Ö

ÇÜ
 (73) 

=O:P 
@O:P
p Q 9PM\(>	mod	24)Å>

ÇÉÑ1Ö

ÇÜ
 (74) 

=O:T 7U=%V 9PM\(>	mod	24)Å>
ÇÉÑ1Ö

ÇÜ
+ 7U (75) 

=XY ]XY9PM\(>	mod	24)=XY,0^'(>	mod	24)Å>
ÇÉÑ1Ö

ÇÜ
 9PM\(>	mod	24)Å>

ÇÉÑ1Ö

ÇÜ
+ `XY (76) 

=0c ]0c9PM\(>	mod	24)=0c,0^'(>	mod	24)Å>
ÇdJÑ1Ö

ÇÜ
 9PM\(>	mod	24)Å>

ÇÉÑ1Ö

ÇÜ
+ `0c (77) 
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5.2.3.5 Final nonlinear optimization problem 

 The decision variables in the final optimization problem are listed in Table 37. There are a 

total of 9×#$% + 14 variables. For the given case study, there were 16 hours of HVAC operation 

per day. Thus, for one-hour timesteps, there were 158 variables.  

 
Table 37 Decision variables in the nonlinear optimization problem 

Variable Units Number Lower limit Upper limit 

)*+	 m3/h	 #$% )*+,2
3  )*+,2

4  

5*+	 m3/h	 #$% )*+,2
3  )*+,2

4  

67,89+$	 kW	 #$% 0 67,89+$
4  

69,<**3	 kW	 #$% 0 69,<**3
4  

=8<	 µg/m3	 #$% + 1 0  
=@<A	 µg/m3	 #$% + 1 0  
=@<B	 µg/m3	 #$% + 1 0  
=CD	 µg/m3	 #$% + 1 0  
=*E	 ppb	 #$% + 1 0  

=8<,9HC	 µg/m3	 1 0  
=@<A,9HC µg/m3 1 0  
=@<B,9HC µg/m3 1 0  
=CD,9HC µg/m3 1 0  
=*E,9HC ppb 1 0  
VR8< L/s/occ 1 0  
VR@<A L/s/occ 1 0  
VR@<B L/s/occ 1 0  
VR L/s/occ 1 5  

 
 
 The objective function, in discrete form and with appropriate substitutions, is 

K = MN+79 exp QNC,R + QNC,S ⋅ VR + QNC,U ⋅ VR
U + QNC,V ⋅ VR

V  

 +MN+79 exp Q9+,R + Q9+,S ⋅ VR + Q9+,U ⋅ VR
U + Q9+,V ⋅ VR

V  

+MCD=CD,9HC + M*E=*E,9HC +
1

W*8
M767,89+$,2 + M9,269,<**3,2 ∆Y

Z[\

2]S

 

(78) 

 The remainder of the problem is defined in terms of equality constraints, listed in Table 38, 

which derive from the governing equations for process dynamics listed in Table 35. 
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Table 38 Equality constraints in the nonlinear optimization problem 
Equation Description Number 

!",$,% + !",',%()*+,% + !",,,% ()*+,%
,

1 + exp −23,",% ()*+,% − 45,",%
− 6",78+9,% = 0 Natural gas use as a function of 

corrected OA flow <93 

!8,$,% + !8,',%()*+,% + !8,,,% ()*+,%
,

1 + exp −23,8,% ()*+,% − 45,8,%
− 68,5**=,% = 0 Electricity use as a function of 

corrected OA flow <93 

2(?75<*55,%∆A + 2 − (B*+,%∆A C75 A%D' − 2 + (B*+,%∆A C75 A% = 0 C75 dynamics during each timestep <93 

C75 AEFG H
DIJK,LFMLF +

N75,O9

P75,O9
1 − HDIJK,LFMLF − C75 A$ = 0 Cyclical requirement 1 

2(?Q5RS∆A + 2 − (B*+,%∆A CQ5R A%D' − 2 + (B*+,%∆A CQ5R A% = 0 CQ5R dynamics during each timestep <93 

CQ5R AEFG H
DITKU,LFMLF +

NQ5R,O9

PQ5R,O9
1 − HDITKU,LFMLF − CQ5R A$ = 0 Cyclical requirement 1 

22VC8W∆A + 2 − (B*+,% + 2V ∆A CQ5X A%D' − 2 + (B*+,% + 2V ∆A CQ5X A% = 0 CQ5X dynamics during each 
timestep <93 

CQ5X AEFG H
DITKY,LFMLF +

NQ5X,O9

PQ5X,O9
1 − HDITKY,LFMLF − CQ5X A$ = 0 Cyclical requirement 1 

2 1 − Z[\,\] ( B*+,% − BRO^,% + _[\(BRO^,% C[\,*`9,%∆A

+ 2 − (B*+,% + Z[\,a85( B3+,% − B*+,% − BRO^,% + b[\ ∆A C[\ A%D'

− 2 + (B*+,% + Z[\,a85( B3+,% − B*+,% − BRO^,% + b[\ ∆A C[\ A% = 0 
C[\ dynamics during each timestep <93 

C[\ AEFG H
DIcd,LFMLF +

N[\,O9

P[\,O9
1 − HDIcd,LFMLF − C[\ A$ = 0 Cyclical requirement 1 
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2 1 − Z*e ( B*+,% − BRO^,% + _*e(BRO^,% C*e,*`9,%∆A

+ 2 − (B*+,% + Z*e( B3+,% − B*+,% − BRO^,% + b*e ∆A C*e A%D'

− 2 + (B*+,% + Z*e( B3+,% − B*+,% − BRO^,% + b*e ∆A C*e A% = 0 
C*e dynamics during each timestep <93 

C*e AEFG H
DIfg,LFMLF +

N*e,O9

P*e,O9
1 − HDIfg,LFMLF − C*e A$ = 0 Cyclical requirement 1 

C75 A%D' + C75 A%
2

<*55,%∆A
EFG
%h'

i*7
− C75,8j[ = 0 Occupant-weighted averaging 1 

CQ5R A%D' + CQ5R A%
2

<*55,%∆A
EFG
%h'

i*7
− CQ5R,8j[ = 0 Occupant-weighted averaging 1 

CQ5X A%D' + CQ5X A%
2

<*55,%∆A
EFG
%h'

i*7
− CQ5X,8j[ = 0 Occupant-weighted averaging 1 

C[\ A%D' + C[\ A%
2

<*55,%∆A
EFG
%h'

i*7
− C[\,8j[ = 0 Occupant-weighted averaging 1 

C*e A%D' + C*e A%
2

<*55,%∆A
EFG
%h'

i*7
− C*e,8j[ = 0 Occupant-weighted averaging 1 

?75( − 3.6( ∙ VR75 ∙ C75,8j[ = 0 Definition 1 

?Q5RA( − 3.6( ∙ <*55,+]8 ∙ VRQ5R ∙ CQ5R,8j[ = 0 Definition 1 

2VC8W − 2VCQ5X,8j[ − 3.6( ∙ <*55,+]8 ∙ VRQ5X ∙ CQ5X,8j[ = 0 Definition 1 

0.50 ∙ VR75 + 0.25 ∙ VRQ5R + 0.25 ∙ VRQ5X − VR = 0 Definition 1 

s%tB*+,t

EFG

th'

− )*+,% = 0 Definition <93 
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 The various parameters and exogenous variable trajectories required by the optimization 

routine, such as occupancy, supply airflows, and infiltration, were extracted from simulations 

during the problem setup routines, at approximately the same time as the polynomial energy 

models were fit. 

 

5.2.4 Solution method 

 After discretizing and translating the optimal control problem, the resulting nonlinear 

optimization problem can be solved efficiently by interior point methods (Biegler & Zavala, 

2009; Byrd, Hribar, & Nocedal, 1999). While there are more powerful open source options, 

notably IPOPT, the interior point solver in Matlab proved sufficient for the present research, 

capable of solving each problem in a few seconds. Providing analytical expressions for gradients 

and the Hessian (second derivatives of the Lagrangian) was critical for achieving the speed and 

performance of the solver. It was also necessary to use some trial and error with multipliers to 

change the scaling of the Hessian and improve numerical performance. All of the results explored 

in this chapter are for timesteps of one hour. Testing did not indicate additional improvements 

available with optimization using shorter timesteps. 

 

5.2.5 Testbed 

 The model used for assessment throughout was a small office with the same size, 

construction, and other physical properties as the office used in Chapter 4. Simulations in this 

chapter were conducted in Philadelphia. Energy prices were the medium level prices from 

Chapter 4, i.e. $0.1586 /kWh for electricity and $0.0469 /kWh for natural gas. Work performance 

and absenteeism parameters were also the medium reference values established in Chapter 4. 

Prices were set to zero for PM2.5 and ozone for the present work. The “standard” version of the 

model refers to a version with median envelope leakiness, a typical office schedule, design 
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occupant density of 5 occupants per 100 m2, and no time-of-use pricing. The standard office 

model was used for much of the analysis, then expanded to include dynamic time-of-use 

electricity pricing. Finally, a sensitivity analysis broadened the scope to buildings with tighter 

envelopes, less typical occupancy profiles, and more occupants.  

 

5.3 Results 

5.3.1 The effective ventilation rate 

 This section illustrates the effective ventilation rate VReff and the principle of equivalency 

that will be used throughout the rest of the results. We compare three strategies on a single day, 

January 11, which had significant wind- and temperature-driven infiltration. The first strategy 

employed fixed ventilation (‘Fixed’), or a constant outdoor airflow rate, determined based on the 

design occupancy, during mechanical system operation. Though the fixed mechanical ventilation 

rate VRmv was 10 L/s/occ, all of the VR metrics were much greater because of infiltration. As 

Table 39 indicates, VRbuild, an average of the VR metrics for the ventilation-independent (bci) and 

dependent (bcd) building-emitted contaminants, was 19.8 L/s/occ. VRhc, based on the human-

emitted contaminant, was greater, at 21.8 L/s/occ. VRhc was nearly always greater than VRbuild, 

regardless of ventilation strategy, because of the morning transients. The transient rise of the 

human-emitted contaminant in the morning makes Chc,exp less than what the steady state 

concentration would be, while the transient dilution of the building-emitted contaminant makes 

Cbcd,exp and Cbci,exp greater than what the steady state concentration would be. 

 The time plots in Figure 38 illustrate the phenomenon. Chc rises during the morning and falls 

during the evening, so that its average is less than the steady state value it approaches in the 

middle of the day (and thus the computed VRhc greater than one based on the maximum Chc). On 

the other hand, Cbci and Cbcd fall during the morning and rise during the evening, so that their 

averages are greater than the steady state values they respectively approach in the middle of the 
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day (and thus the computed VRbci or VRbcd less than one based on the maximum Cbci or Cbcd). We 

regard these phenomena as beneficial features of the equivalent VR approach. Most importantly, 

the approach accurately reflects aggregate exposure, which is, in our view, the principal outcome 

ventilation aims to affect. In addition, the inclusion of both human and building contaminants, 

which usually have negatively correlated trajectories at the beginning and end of the day, helps 

make the approach more robust to undesirable optimization solutions. 

 The second strategy in Table 39 shows the results of implementing an economizer and 

demand-controlled ventilation (EDCV), though only the DCV portion was in effect on this cold 

winter day. The CO2 setpoint corresponds to a mechanical VR of 10 L/s/occ with a typical office-

work CO2 emission rate. The VReff that resulted was 11.6 L/s/occ, somewhat greater than 10 

L/s/occ because of the morning transients, but much less than the 20.8 L/s/occ VReff that resulted 

from the fixed VRmv of 10 L/s/occ. This was because, as the left column of Figure 38 shows, the 

EDCV strategy (in red) nearly doubled exposed concentrations of the human-emitted and 

independent building-emitted contaminants. To achieve the same VReff as fixed ventilation with a 

VRmv of 10 L/s/occ in a DCV strategy, the CO2 setpoint would need to be much lower, at 633 

ppm. The right column of Figure 38 shows this strategy, and how it produced approximately the 

same exposure for each of the three contaminants as the fixed VRmv strategy. 

 
 

Table 39 For three ventilation strategies on January 11, ventilation rate (VR) values in 
L/s/occ. For the two strategies with economizer and demand-controlled ventilation (EDCV), 
the CO2 setpoint in ppm is given. 

 

Strategy VRmv CO2 setpoint VReff VRhc VRbuild VRbci VRbcd

Fixed 10 - 20.8 21.8 19.8 19.5 20.1

EDCV - 917 11.6 12.4 10.8 10.8 10.8

EDCV - 633 20.8 22.8 18.7 17.9 19.5
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Figure 38 Time plots of the total outdoor air exchange rate loa and concentrations of a human-
emitted contaminant (hc) and building-emitted independent (bci) and dependent (bcd) 
contaminants. The columns show two different demand-controlled ventilation implementations (red 
line); the fixed ventilation strategy (blue line) is the same. The curves with shaded areas underneath 
show cumulative occupant-weighted exposure; the gray shaded areas are unoccupied periods. 

 
 
 In addition to illustrating the VR metrics, these strategies demonstrate one of the central 

principles of our analysis in this chapter: equivalency between any two strategies that have the 

same effective VR. This is an important point that extends beyond the work here. Consider the 

three dots that illustrate the lost work performance (with VReff on the upper x-axis) versus daily 

energy cost for the three strategies just described. In most typical implementations, including as 

permitted by ASHRAE Standard 62.1-2016, the EDCV strategy with a CO2 setpoint derived from 
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10 L/s/occ is considered acceptable to meet a 10 L/s/occ requirement for mechanical ventilation. 

The fixed strategy cost $14.68 for the day, while the EDCV version cost $11.50, representing a 

$3.18 or 22% savings. These types of savings are consistent with numerous evaluations of DCV 

potential, including those in the second chapter. However, as Figure 39 makes clear, the two 

strategies were not equivalent. The EDCV strategy with a setpoint of 917 ppm saved money by 

reducing ventilation.  

 

 
Figure 39 Fixed and economizer and demand-
controlled ventilation (EDCV) Pareto curves, 
with points marked for the three strategies listed 
in Table 39. 

 
 
 
 Before considering the cost savings, one must consider whether the desired effective VR is 

20.8 L/s/occ or 11.6 L/s/occ. Figure 39 also shows Pareto curves for fixed ventilation and 

EDCV—that is, plots of the tradeoffs between LWP/VReff and energy costs. We can see that 

EDCV provides Pareto improvements since its curve is below and to the left of that of fixed 

ventilation. Our equivalent ventilation approach quantifies these improvements by calculating the 

distance between the curves at a given target VReff. Graphically, it is like taking a vertical cross-

section of the Pareto curves at a VReff value. In the example at hand, for a target VReff of 11.6 

L/s/occ, fixed ventilation and EDCV achieved it with identical energy costs. For a target VReff of 

20.8 L/s/occ, EDCV saved $0.81 or 6% compared to fixed ventilation. 
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 While Chapter 4 explored how the VR should be set, this chapter assumes that a VReff has 

already been determined, and examines about whether there is any benefit changing the way the 

given VReff is achieved on a single day. 

 

5.3.2 Pareto improvements, by day 

 The next few sections explore the optimized OBV results in the “standard case” of the small 

office testbed, that is with median envelope leakiness, default occupant density of 5 people per 

100 m2, a typical schedule, and no time-of-use pricing. A sensitivity analysis in Section 5.3.7 

expands on these findings. We illustrate with four days: January 11, June 15, July 3, and July 18, 

Pareto curves for which are shown in Figure 40. 

 On January 11, a day with an occupant-weighted average outdoor temperature (Toa) of about 

0 °C, the DCV control of EDCV provided equivalent VReff to fixed ventilation with some energy 

savings. Optimized OBV, however, did not provide additional savings, yielding a Pareto curve 

nearly identical to EDCV. On June 15, which had an occupant-weighted average Toa of about 25 

°C, EDCV provided relatively few savings, while the OBV provided meaningful benefits even 

over EDCV.  On July 3, though, which also had an occupant-weighted average Toa of about 25 

°C, the relation between VReff and energy consumption was nearly flat. None of the strategies 

used significantly less energy than the others, though employing fixed ventilation at any rate less 

than the maximum would be a lose-lose proposition in terms of LWP and energy costs. Finally, 

on July 18, with an occupant-weighted average Toa of about 30 °C, there was again a tradeoff 

between VReff and energy costs, but no Pareto improvements were possible, with all strategies 

yielding essentially the same tradeoff curve.  
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Figure 40 Pareto curves for four illustrative days showing energy costs versus lost work performance 
(LWP) and effective ventilation rate (VReff) for fixed ventilation, economizer with demand-controlled 
ventilation (EDCV), and optimized outcome-based ventilation (OBV). 

 
 
 
 The days illustrated in Figure 40 were representative of general trends. In the winter, the 

DCV component of EDCV saved energy compared to fixed ventilation, but optimized OBV 

presented no additional savings. The same was true on most spring and fall days, though on those 

days it was the economizer component of EDCV rather than DCV that saved energy. On the 

hottest summer days, neither EDCV nor OBV used meaningfully less energy than fixed 

ventilation for equivalent VReff. Only on days that were warm but not excessively hot did 

optimized OBV provide energy savings beyond those of EDCV. 

 These results are illustrated in Figure 41, Figure 42, and Figure 43. In each, the top left panel 

shows energy costs for fixed ventilation and EDCV, and the bottom left panel the savings of 

EDCV versus fixed ventilation. Similarly, the top right panel shows energy costs for EDCV and 

OBV, and the bottom right panel the savings of OBV versus EDCV. In all plots, the x-axis is the 
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time-weighted average outdoor air temperature. Figure 41 corresponds to VReff = 10 L/s/occ, i.e. 

shows the points one would get by slicing the Pareto curves at an effective VR of 10 L/s/occ, or 

an LWP of 2.54%. In this relatively leaky small office, a VReff of 10 L/s/occ was typically 

achieved by with or nearly with infiltration alone, and so there was no difference between DCV 

and fixed ventilation on most days. However, economizing saved energy when the average Toa 

was between about 15 and 25 °C. OBV saved energy vis-à-vis EDCV on some days when the 

average Toa was between 20 and 30 °C. 

 

 
Figure 41 HVAC costs and savings for fixed ventilation, economizer and demand-controlled ventilation 
(EDCV), and optimized outcome-based ventilation (OBV) for VReff = 10 L/s/occ. 
 

 

 For VReff = 20 L/s/occ (Figure 42), EDCV continued to save meaningful energy costs on mild 

days. The DCV component also provided a better tradeoff than fixed ventilation on cold days, but 

not hot ones. The savings from moving from EDCV to OBV were greater than for VReff = 10 

L/s/occ, but remained available only for average Toa between about 20 and 30 °C. 
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Figure 42 HVAC costs and savings for fixed ventilation, economizer and demand-controlled ventilation 
(EDCV), and optimized outcome-based ventilation (OBV) for VReff = 20 L/s/occ. 
 

 

 The trends for VReff = 30 L/s/occ (Figure 43) were similar, with EDCV saving even more on 

cold days and still none on hot ones, so that the DCV and economizer benefits create savings 

typically up to $1/day continuously from low temperatures to just over 20 °C. The savings from 

moving from EDCV to OBV were greater but again only observed for average Toa between about 

20 and 30 °C.  

 

 
Figure 43 HVAC costs and savings for fixed ventilation, economizer and demand-controlled ventilation 
(EDCV), and optimized outcome-based ventilation (OBV) for VReff = 30 L/s/occ. 
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5.3.3 Strategy examination 

 Figure 44 shows time trajectories of the ventilation strategies behind these results, along with 

the concentration and electricity use profiles they produced. Plots for economizer with demand-

controlled ventilation (EDCV) are in blue and optimized outcome-based ventilation (OBV) in red 

for three days. Gray areas represent unoccupied times. Filled areas show cumulative occupant-

weighted average concentrations or, in the case of Ee, cumulative energy use. The plots for June 

15 and July 18 are for a VReff of 20 L/s/occ. The plots for July 3 are for a VReff of 22.2 L/s/occ, 

because economizing was favorable for so much of the day that the Pareto curve for OBV never 

went lower. 

 On June 15, traditional economizing was favorable until late morning, and outdoor airflow 

increased as thermal load increased. The optimized OBV strategy instead began the occupied 

period immediately with maximum ventilation and continued until noon. Thereafter, it brought in 

less outdoor air than EDCV, thereby savings energy in the hot afternoon. Compared to EDCV, 

the OBV strategy produced a somewhat higher Chc,exp, but achieved the same VReff with slightly 

lower results for Cbci,exp, and Cbcd,exp. The bottom plot shows that most energy savings were in the 

afternoon, when OBV ventilated less because of the additional morning ventilation. 

 On July 3, the situation was similar in the morning. However, the afternoon outdoor 

temperature and especially enthalpy were not very high, so much so that economizing again 

became favorable in the later afternoon. The result was that outcome-based OBV was quite 

similar to EDCV. Although OBV provided some additional outdoor air in the early morning and 

late afternoon, it saved no appreciable energy. On July 18, the situation was different: with higher 

outdoor air temperatures, there was little opportunity for savings. The search for savings led the 

optimized OBV strategy to oscillate back and forth, which could in theory save some energy, 

because ventilation is always more effective when concentrations are greater. However, the 

energy savings were extremely minimal. 
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Figure 44 Plots for economizer with demand-controlled ventilation (EDCV) in blue and optimized outcome-based ventilation (OBV) in red for three days. Gray 
areas represent unoccpied times. Filled areas show cumulative occupant-weighted average concentrations or, in the case of Ee, cumulative energy use.
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5.3.4 Outdoor pollution exposure implications    

 The work in this chapter proceeds from the assumption that high quality filters are likely to 

be better than ventilation strategy modification for dealing with outdoor air pollution, and 

therefore does not include PM2.5 and ozone exposure in the objective function used by the 

optimization problem. It is nonetheless instructive to assess the impacts of the optimized OBV 

strategies on outdoor pollution exposure. For the three strategies at VReff = 20 L/s/occ (or 22 

L/s/occ) shown in Figure 44, Table 40 lists some of the exposed concentration values. In all 

cases, the mechanical ventilation filter PM2.5 removal efficiency was 40% and the recirculation 

efficiency was 20%. On June 15, while OBV led to substantially lower cooling coil electricity 

costs, it also increased exposed concentrations of both PM2.5 and ozone. The same was true, to a 

lesser extent on July 3 and July 18. 

 

Table 40 Comparison of impacts on exposure to outdoor pollutants. 

 

 

 The increase in loss due to increased outdoor pollutant exposure was much greater than the 

loss reduction due to lower energy costs. For example, on even the significant energy savings on 

June 15 only amounted to an electricity use loss reduction of 0.01 $/occ/h, while the public health 

losses increased by 0.06 $/occ/h. This may be another factor mitigating against the adoption of 

strategies like those discovered by the optimizations. More study would be needed, on the 

Day Strategy VReff

(L/s/occ)
Electricity cost

($)
Cpm,exp

(µg/m3)

Co3,exp

(ppb)
Le

($/occ/h)
Lpm

($/occ/h)
Lo3

($/occ/h)

June 15 EDCV 20.0 7.79 7.3 12.9 0.05 0.26 0.03

June 15 OBV 20.0 6.50 8.6 15.7 0.04 0.31 0.04

June 15 Change 0.0 -1.29 1.30 2.80 -0.01 0.05 0.01

July 3 EDCV 22.2 5.70 8.5 13.1 0.04 0.30 0.03

July 3 OBV 22.2 5.46 9.1 14.5 0.03 0.32 0.04

July 3 Change 0.0 -0.24 0.61 1.39 0.00 0.02 0.00

July 18 EDCV 20.0 13.62 7.1 11.2 0.08 0.25 0.03

July 18 OBV 20.0 13.47 7.4 11.6 0.08 0.26 0.03

July 18 Change 0.0 -0.15 0.31 0.34 0.00 0.01 0.00
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influence of filter efficiency and different outdoor air pollution profiles. It is also worth noting 

that the same issue pertains to the difference between fixed ventilation and EDCV. For example, 

on June 15, the fixed ventilation strategy that yielded a VReff of 20 L/s/occ cost significantly 

more, at $9.19, than EDCV, but also produced lower exposed concentrations of PM2.5, at 6.6 

µg/m3, and ozone, at 11.7 ppb. 

 

5.3.5 Impact summary 

  Figure 45 shows the annual HVAC energy cost in US $ per m2, for achieving a given target 

VReff for each day of the year. While most results in this chapter only include heating and cooling 

coil energy costs, the values in Figure 45 also include fan energy costs, to enable accurate percent 

savings comparisons. Recall from Chapters 2 and 3 that annual HVAC costs in the range of 5–7 

$/m2 are typical for offices. The costs herein are higher because both the electricity and natural 

gas unit prices are about 50% greater than median prices, reflecting more expensive states or 

inclusion of minimal social costs. 

 

 
Figure 45 Annual HVAC energy costs for fixed, 
economizer with demand-controlled ventilation 
(EDCV), and optimized outcome-based 
ventilation (OBV) strategies, each at three 
effective ventilation rates. 
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 The percent savings from switching from fixed ventilation to EDCV, in terms of annual 

HVAC energy costs, were 3%, 4%, and 5%, respectively, at VReff of 10, 20, and 30 L/s/occ. The 

analogous percent savings from switching from EDCV to optimized OBV were 2%, 3%, and 3%. 

(The combined reductions from going directly from fixed ventilation to optimized OBV were 5%, 

7%, and 8% respectively.) 

 Three conclusions stand out: 

1. First, the energy implications of changing the target VReff were significantly greater than 

the energy implications of selecting the particular strategy used to achieve a given VReff. 

For example, choosing a VReff of 30 L/s/occ rather than 10 L/s/occ increased costs by 22–

25% regardless of the strategy. 

2. When the effective VR was held constant, the energy and cost savings of economizing 

and DCV were much less than are typically reported when the effective VR is also 

allowed to change. When we speak about the energy savings of typical DCV 

implementations, we should be clear that most of them do not represent Pareto 

improvements, but rather result from a de facto decision to move the ventilation-energy 

tradeoff point, with less ventilation for less energy use. 

3. Nonetheless, EDCV does provide meaningful Pareto improvements, in addition to 

providing a practical method for achieving or getting close to a target VReff. At least for 

the standard office, the optimized ventilation did not appear to yield sufficient savings 

above and beyond EDCV to justify the complexity of its implementation.  

 

5.3.6 Time-of-use pricing  

 One potential use of dynamically optimizing outdoor air delivery in the outcome-based 

ventilation framework is for energy costs savings in a dynamic time-of-use (TOU) electricity 

pricing structure. To assess this opportunity, we optimized all the days in June, July, and August 
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with prices that remained at 0.1586 $/kWh for most of the day but nearly doubled to 0.3000 

$/kWh from 2 p.m. to 4 p.m. Figure 46 shows Pareto curves for June 15 and July 3, and Table 41 

summarizes results for the entire summer. 

 

 
Figure 46 Pareto curves of tradeoff space between lost work performance (LWP) or effective ventilation 
rate VReff and energy costs, for two summer days with time-of-use pricing, showing fixed ventilation, 
economizer with demand-controlled ventilation (EDCV), and optimized outcome-based ventilation (OBV). 
  
 
 
 Comparing the plots in Figure 46 to their analogues in Figure 40 shows that TOU pricing 

increased total energy costs on both days. On June 15, the dynamic pricing also increased the 

difference between EDCV and optimized OBV slightly. On July 3, TOU pricing did not add any 

meaningful distinctions among the three strategies. Table 41 summarizes HVAC costs per m2 for 

the summer. It shows that the absolute cost savings of OBV versus EDCV were slightly greater 

with TOU pricing, but the relative cost savings were almost identical to cases without TOU 

pricing. In other words, TOU pricing increased the average unit cost of energy, and the savings 

from OBV increased by a corresponding proportion. No qualitatively novel or beneficial behavior 

was enabled by applying optimization in a dynamic pricing context. Table 41, it is worth noting, 

also confirms that, with or without TOU pricing, the greatest savings from OBV were during the 

summer. 
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Table 41 Summer HVAC costs and percent changes for fixed ventilation, economizer with 
demand-controlled ventilation (EDCV), and optimized outcome-based ventilation (OBV), with 
and without time-of-use (TOU) electricity pricing. 

 

 

5.3.7 Sensitivity analysis  

 So far, results presented have shown that, for the standard office, optimizing ventilation in an 

outcome-based framework can achieve equivalent VReff while providing some cost savings over 

both fixed ventilation and EDCV, but only during a limited number of warm-but-not-hot days—

cumulatively providing relatively minor savings over EDCV, which turns out to be reasonably 

close to optimal. To assess other situations, we conducted a factorial sensitivity analysis (SA), 

varying five factors: 

• the day of the year, among the four days already used for illustration: January 11, June 

15, July 3, and July 18; 

• the daily schedule of fractional occupancy, among the typical (“Typ”) schedule used in 

all simulations presented so far, a morning pattern (“Morn”), an afternoon schedule 

(“Aft”), and a highly intermittent occupancy (“Int”); 

• occupant density, between 5 occupants and 20 occupants per 100 m2; 

• infiltration, between that produced by a median envelope leakage coefficient and that 

produced by an extremely low leakage coefficient; 

• the absence or presence of time-of-use pricing. 

The schedules are shown in Figure 47. 

Cost change ($/m2)

Fixed EDCV OBV Fixed to 
EDCV

EDCV to 
OBV

Fixed to 
OBV

EDCV to OBV

No 10 2.59 2.52 2.43 3% 3% 6% -0.09
Yes 10 2.93 2.86 2.76 2% 4% 6% -0.10
No 20 2.79 2.73 2.59 2% 5% 7% -0.14
Yes 20 3.17 3.12 2.93 2% 6% 8% -0.20
No 30 2.96 2.92 2.77 1% 5% 6% -0.15
Yes 30 3.37 3.34 3.13 1% 6% 7% -0.22

Including fan 
energy costs

TOU 
pricing

VReff

(L/s/occ)

Summer HVAC cost ($/m2) Percent change
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Figure 47 Typical (Typ), morning (Morn), afternoon 
(Aft), and intermittent (Int) occupancy schedules. 

 
 
 
 The SA results seemed to confirm that optimizing outcome-based ventilation is unlikely to 

provide any benefits on heating days. On January 11, regardless of occupancy schedule, occupant 

density, or infiltration, the optimized OBV strategy saved no energy compared to EDCV. The 

results for the other three days for VReff = 10 L/s/occ are shown in Figure 48. The bars span from 

the low to the high savings of OBV versus EDCV, and the black line in the middle is the mean of 

the SA cases.  

  

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
na

l o
cc

up
an

cy

Int

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
na

l o
cc

up
an

cy

Aft

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
na

l o
cc

up
an

cy

Morn

0

0.2

0.4

0.6

0.8

1

0 4 8 12 16 20 24

Fr
ac

tio
na

l o
cc

up
an

cy

Time

Typ



www.manaraa.com

 
 

 

189 

 

 

 
Figure 48 Sensitivity results for three days, for the 
savings of optimized outcome-based ventilation 
versus economizer and demand-controlled 
ventilation (EDCV). For each factor value, the bars 
span from the minimum to maximum savings and 
the black lines indicate the mean savings. 
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 Of the three, June 15 remained the day with the most potential for savings, though the varied 

parameters opened more savings opportunities on the other two days. In general, somewhat 

surprisingly, the typical schedule offered the greatest potential for savings (except on July 18, 

where the intermittent schedule had slightly greater mean savings.) On July 18, the lower 

occupant density had greater savings, since the higher occupant density caused economizing to be 

used earlier in the morning, thus reducing the difference between the EDCV and OBV 

trajectories. On the other days, savings were greater with more occupants. In all cases, savings 

were greater with low infiltration, which creates a nighttime buildup of building-emitted 

contaminants. DCV often allows these higher levels to linger, but an optimized strategy can 

capitalize on the value of diluting them early in the morning. On all days, absolute savings were 

greater with TOU pricing. 

 Based on these results, we simulated a case in which we expected OBV to have a high 

impact: the typical schedule with high occupant density and low infiltration (but no TOU 

pricing). Interestingly, the OBV’s savings over EDCV for a VReff of 10 L/s/occ over the whole 

year were only very slightly greater proportionally than for the standard office case (3% as 

opposed to 2%), though they were about twice as great in absolute terms, at $0.30 per m2 

annually. But for greater VReff, savings were proportionally lower with the “high impact” case, 

and for VReff of 30 L/s/occ, they were lower in proportional and even absolute terms. In other 

words, even the case that sensitivity analysis indicated had greater savings on examined days 

produced relatively minimal savings over the entire year. 

 

5.4 Conclusions   

 The central finding of this chapter was the substantial rejection of our hypothesis that when 

and how ventilation is provided during a single day can make a significant difference in energy 

consumption. Introducing the concept of the effective ventilation rate VReff and using it to make 



www.manaraa.com

 
 

 

191 

consistent comparisons confirmed that ventilation does have significant energy impacts. Those 

impacts, however, were essentially determined by outdoor weather conditions, and the tradeoff 

between VR and energy use was largely unavoidable, regardless of the dynamic trajectory of 

ventilation. In other words, there is only a small amount of room for single-day Pareto 

improvements over current ventilation practice, at least in terms of tradeoffs between effective 

ventilation (or profitable IAQ) and energy consumption.  

 Some specific conclusions included: 

• Effective ventilation was a good way to characterize VR for comparing tradeoffs, in that 

it facilitated consistent evaluations of ventilation impacts regardless of the control profile 

of a specific ventilation method. 

• Compared to fixed, constant-rate ventilation, a strategy with economizer and demand-

controlled ventilation (EDCV) saved energy when the occupant-weighted average 

outdoor temperature was below about 25 °C. It saved almost no energy at higher outdoor 

temperatures. Optimization showed that the EDCV strategy was very close to Pareto 

optimal at most times of the year. The annual HVAC energy cost savings from switching 

from fixed ventilation to EDCV, while maintaining the same VReff, were 3–5%. 

• Compared to EDCV, optimized OBV saved literally no energy in the winter. Indeed, 

while it saved some energy on days when the average outdoor temperature was between 

20 and 30 °C, it never saved energy outside of this domain. The annual savings from 

switching from EDCV to optimized OBV were 2–3%. 

• Days when OBV saved energy were ones in which the outdoor temperature and enthalpy 

were lower in the morning than in the afternoon. In particular, the morning had to be cool 

enough that standard feedback economizing did not call for 100% OA, while the 

afternoon had to be hot enough to require significant mechanical cooling and not be 

favorable for economizing. 
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• However, in terms of loss, the negative health impact of bringing in so much OA was 

often greater than the energy savings. Thus, even if a rule-based method for capturing the 

benefits sometimes achieved by optimized OBV was devised, it might not be desirable to 

implement, depending on outdoor air quality and filter efficiency. 

• Time-of-use pricing did not present a qualitatively different opportunity for optimized 

OBV, which in general saved no more than an additional percentage point with TOU 

pricing compared to without it. 

• Sensitivity analysis of optimized OBV indicated that a typical schedule yielded more 

savings than highly intermittent occupancy patterns or schedules heavily skewed towards 

the morning or the afternoon. Savings were also greater with higher occupant density and 

lower infiltration. Even with all of the most favorable characteristics, however, the total 

savings never rose above about $0.30 per m2, and were always less than 5% of HVAC 

energy costs. 

 On any given day on which economizing is not favorable all day, there is a mostly 

unavoidable tradeoff between VReff and energy use, though demand-controlled ventilation and 

optimized OBV can achieve modest Pareto improvements. Even so, there remain multiple 

needs—in addition to being as close to Pareto optimal as possible—that next generation 

ventilation should address. One is to provide guidance and clarity about these tradeoffs and help 

users select scientifically sound tradeoff points. It is also no trivial matter to implement a 

ventilation strategy that reliably achieves a target VReff. Finally, because the energy costs of 

ventilation depend so much on weather and time of year, there are also significant possibilities for 

redistributing ventilation seasonally to achieve Pareto improvements over a yearlong timescale. 
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 CHAPTER 6: CONCLUSIONS AND IMPLICATIONS FOR  
NEXT-GENERATION VENTILATION 

6 CONCLUSIONS AND IMPLICATIONS FOR NEXT-GENERATION VENTILATION 

 

 

 In Chapter 5, we applied the loss function framework to optimizing ventilation over a 

daylong horizon. In terms of profitable IAQ impacts and energy consumption, there were only 

very modest Pareto improvements available from optimization of ventilation during a day. This 

was true not only in comparison to a mature dynamic strategy that combined economizing and 

DCV (EDCV), but also in comparison to fixed ventilation. In other words, there is little slack in 

the tradeoff between higher VRs and higher energy use on days when free cooling is not 

available. Yes, as we saw in Chapter 2, ventilation strategies like DCV can save significant 

energy—but they do so by reducing the effective VR. The reason that, on an annual basis, a 

strategy like economizing with DCV can both save energy and improve profitable IAQ outcomes 

is that it increases ventilation on some days and decreases it on others. This works on an annual 

timescale because IAQ on different days, even consecutive ones, is almost entirely decoupled. On 

the other hand, during a single day, indoor air processes act to tightly couple ventilation control at 

different moments of the day. As a result, it appears that the daylong timescale may be too short 

for the type of shifting that works on an annual scale to have meaningful benefit. 

 Further pursuit of an optimization-based control method does not appear justified given the 

complexity of the approach and the smallness of the savings. In deciding how to proceed, let us 

review some of the core insights produced by the research in this project. 

• Mature ventilation strategies have significant benefits and can be nearly optimal; we 

should build on them. In Chapters 2 and 3, we saw that there are very significant 

opportunities across the office sector for improving ventilation by implementing 

combinations economizing, demand-controlled ventilation, and supply air temperature 

reset. In Chapter 5, we found that a strategy with both economizing and demand-controlled 
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ventilation (EDCV) was near-optimal in a small office at most times of the year. To put it 

in perspective, mature strategy savings were on the order of $1.00 /m2 in the small-CAV 

office and $1.75 /m2 in the medium-VAV office, while optimizing outcome-based 

ventilation (OBV) in the highest impact case explored saved an additional $0.30 /m2 over 

EDCV. 

• Ventilation rates should usually be high. In Chapters 3 and 4, we saw that bringing in more 

outdoor air produced profitable IAQ impacts the economic value of which exceeded the 

added energy costs by two orders of magnitude. Even when the most ventilation-adverse 

parameters were selected, VRs as high as 30 L/s/occ—approximately three times the 

current minimum rate—were usually loss-minimizing. 

• High quality is the best protection against outdoor particle pollution—though perhaps 

outdoor air should be limited (e.g., at 30 or 47 L/s/occ. In Chapters 3 and 4, we saw that 

bringing in more outdoor air could have public health risk impacts whose value 

substantially exceeded the value of energy savings, but remained much lower than the 

value of increased ventilation on work performance and excess absence. The quality of the 

particle filter had a much greater impact on health risk costs than ventilation strategy. 

Nonetheless, since marginal profitable IAQ benefits are substantially lower above 30 

L/s/occ, and disappear above 47 L/s/occ, while PM2.5 exposure continues to increase, 

limiting the upper VR may be beneficial. 

• Ventilation strategies need to take into account and deal effectively with infiltration. All 

strategies, in Chapters 2 and 3 as well as in Chapter 4 were strongly affected by envelope-

leakage and infiltration. In Chapter 5, infiltration was handled by means of defining an 

effective ventilation rate VReff based on concentrations of indoor-emitted contaminants. 

• Ventilation strategies should also adjust for occupancy. Occupant density was another of 

the most important factors affecting ventilation strategy impacts. 
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• Outdoor thermal conditions matter tremendously. Whether comparing annual results by 

climate, as in Chapters 2 and 3, or individual days across seasons in a single location, as in 

Chapters 4 and 5, energy impacts were very sensitive to outdoor conditions. 

 

Concretely, a practical near-optimal ventilation strategy should:  

• Include supply air temperature reset nearly always (in the United States); 

• Include differential enthalpy economizer controls; 

• Require the use of a high-quality particle filter; 

• Use CO2 setpoint control, in part because DCV can provide some Pareto improvements 

on very cold days, but more importantly because it is the only practical way to implement 

a strategy that reliably achieves desired operating, given variations in infiltration and 

occupancy.  

 On the other hand, the results from DCV with different setpoints in Chapter 3 and the OBV 

framework in Chapter 4 both point to the need to make more conscious and informed decisions 

about the tradeoffs among ventilation outcomes. There is also a significant opportunity to search 

for Pareto improvements over the year (rather than within a single day). Thus, vis-à-vis existing 

ventilation strategy options, there remain three principal benefits and one additional potential 

benefit to be sought with next-generation, outcome-based multi-objective ventilation control:  

1. It can provide clarity to users about tradeoff points, to allow them to make more informed 

decisions and understand the consequences of them. 

2. It should control outdoor air so that selected tradeoff points are achieved in practice, and 

provide clear information about the state of IAQ. 

3. It should take advantage of opportunities for shifting ventilation energy seasonally, 

beyond what is currently done by economizing (which only considers energy use), to 

optimally allocate a fixed energy budget over the year. 



www.manaraa.com

 
 

 

196 

4. It may potentially be able to provide ancillary benefits on a daylong scale, such as 

reduction of outdoor pollution exposure (particularly during economizer cycle). 

 Achieving these benefits is beyond the scope of this thesis, but we believe it can be with a 

procedure that takes advantage of existing successful technology components, like CO2 sensing 

and economizer controls, potentially adds rules-based control logic, and incorporates this control 

logic into an initial preference elicitation step that will determine user preference for tradeoffs and 

intelligently allocate ventilation resources across the year. 

 A central insight behind this chapter and the previous one is that the problem of selecting 

among tradeoff points is simplified by separating ventilation control into two separate scopes. An 

annual scope, with day-average resolution, is most appropriate for allocating ventilation 

resources. The annual scope is also the ideal one for consideration of tradeoffs in ventilation 

decisions. Once these decisions have been made, they do not need to be reconsidered each day. In 

essence, the annual scope functions as a supervisory control for setting the high-level objectives 

of the ventilation system, while the daily control uses mostly off-the-shelf feedback-based 

strategies to achieve daily targets set by the supervisory control. 

 Here we outline a proposed method to be taken up, fleshed out, and developed by colleagues 

building upon this work. 

 

Method – Annual scope for supervisory control 

1. Elicit user’s energy vs. profitable IAQ tradeoff point (no pollution considered here). 

a. Get user preferences parameters (EPWP, EPEA, PWP, PEA, Pe, Pg), building descriptors, 

and weather file. 

b. Use an annual optimization model to formulate an annual Pareto curve. (This refers to 

an annual, day-resolved optimization model, not related to any of the models discussed 

in Chapter 5.) The simplified energy model on which this step would be based has 

already been developed and published (Ben-David, Rackes, & Waring, 2018). Display 
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the annual Pareto curve, with annual work performance and excess absence losses on 

the x-axis and annual energy costs on the y-axis. A number of reference points can also 

be displayed, to indicate the tradeoffs obtained by fixed ventilation strategies like the 

ASHRAE 62.1-2016 fixed minimum and doubled ventilation. 

c. Allow the user to select a point on the Pareto curve. The y-value of this point is the 

energy cost budget. Run the annual optimization forward to determine the optimal day-

averaged VRDA for each day of the weather file such that the total annual energy use 

cost does not exceed the selected energy cost budget. 

2. Create a simple method (a fit, interpolation, or a combination) that estimates the optimal day-

average VRDA as a function of day-averaged outdoor temperature (during winter) or outdoor 

enthalpy (during the summer). Note because this is a procedure, that this relation is not a 

metamodel. It is for this particular building only, so no complex fits need to be used and no 

building parameters need to be inputs. 

 

Method – Daily scope for local feedback control 

1. At the outset of each day, use the predictions for the day-average values of the condition 

variables as inputs to the optimal day-average fit to determine appropriate VRDA for the day. 

2. Relate VRDA to a CO2-based control strategy in a consistent way. It is likely that simply 

determining the CO2 setpoint associated with VRDA would be sufficient. 

3. Control based on the CO2 setpoint or economizer controls, whichever calls for greater 

outdoor air flow. 

4. If desired, assess any modifications to this basic control. These might, for example, enable 

economizing or partial economizing at some times when it is not strictly thermally favorable, 

add a rule to shift or limit ventilation in light of pollution trajectories, or add a rule to 

implement a morning flush for buildings with low infiltration.  
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 It is hoped that these procedures, based on many of the insights developed in this research, 

can provide the basis for next-generation commercial building ventilation and can capture some 

benefits that no existing ventilation strategy can. These benefits include setting the appropriate 

balance between energy, profitable IAQ, and IAQ public health interests; right-sizing ventilation 

based on infiltration; and shifting ventilation to the times of year when it is most effective per unit 

of energy consumption.  

 Together, shifting ventilation approaches so they are based on expected outcomes, targeted to 

a setting, and dynamically adjusted in response to changing conditions over time can enhance 

beneficial outcomes, avoid negative outcomes, and lead to more effective strategies. Importantly, 

this shift in approach can also provide greater certainty about outcomes, and greater clarity to 

help make decisions when tradeoffs among outcomes are unavoidable. 
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